The analysis of induced chromosome aberrations by maize endosperm phenotypes

  • A. C. Fabergé


Maize Chromosome Aberration Maize Endosperm Induce Chromosome Aberration Endosperm Phenotype 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Catcheside, D. G.: Genetic effects of radiation. Adv. Genet.2, 271–358 (1948).Google Scholar
  2. Clark, F. J., and F. C.Copeland: Chromosome aberrations in endosperm of maize. Amer. J. Bot.27, 247–251 (1940).Google Scholar
  3. Dollinger, E. J.: Studies on induced mutation in maize. Genetics39, 750–766 (1954).Google Scholar
  4. East, E. M., and H. K.Hayes: Inheritance in maize. Conn. Agr. Exper. Stat. Bull.167, 1–141 (1911).Google Scholar
  5. Emerson, R. A.: Anomalous endosperm development and the problem of bud sports. Z. Vererbungslehre14, 241–259 (1915).Google Scholar
  6. — Genetic evidence of aberrant chromosome behavior in maize endosperm. Amer. J. Bot.8, 411–424 (1921).Google Scholar
  7. Fabergé, A. C.: Ultra violet induced chromosome aberrations in maize. Genetics36, 549–550 (1951).Google Scholar
  8. — The analysis of chromosome breaks by endosperm phenotype in maize. Genetics39, 966 (1954).Google Scholar
  9. Fano, U.: Note on the theory of radiation induced lethals inDrosophila. Science (Lancaster, Pa.)106, 87–88 (1947).Google Scholar
  10. Jones, D. F.: Somatic segregation due to hemizygous and missing genes, and its bearing on the problem of atypical growth. Proc. Nat. Acad. Sci. U.S.A.21, 90–96 (1935).Google Scholar
  11. — Segregation of color and growth regulating genes in somatic tissue of maize. Proc. Nat. Acad. Sci. U.S.A.22, 163–166 (1936).Google Scholar
  12. — Somatic segregation and its relation to atypical growth. Genetics22, 484–522 (1937).Google Scholar
  13. — Translocation in relation to mosaic formation in maize. Proc. Nat. Acad. Sci. U.S.A.24, 208–211 (1938).Google Scholar
  14. — Natural and induced changes in chromosome structure in maize endosperm. Proc. Nat. Acad. Sci. U.S.A.27, 431–435 (1941).Google Scholar
  15. Kaufmann, B. P.: Organization of the chromosome, 1. Break distribution and chromosome recombination inDrosophila melanogaster. J. of Exper. Zool.102, 293–320 (1946).Google Scholar
  16. Longley, A. E.: Cytological analysis of translocations in corn chromosomes resulting from ionizing radiation of the test Able atomic bomb, and X-rays, and of translocations from other sources. Report of Naval Medical Research Section, Joint Task Force O N E on biological aspects of atomic bomb tests. Appendix No 10, 1–60 (1950).Google Scholar
  17. McClintock, B.: The fusion of broken ends of sister half-chromatids following chromatid breakage at meiotic anaphases. Res. Bull. Missouri Agric. Exper. Stat.290, 1–48 (1938a).Google Scholar
  18. — The production of homozygous deficient tissue with mutant characteristics by means of the aberrant mitotic behavior of ring shaped chromosomes. Genetics23, 315–376 (1938b).Google Scholar
  19. — The stability of broken ends of chromosomes inZea Mays. Genetics26, 234–282 (1941).Google Scholar
  20. — The fusion of broken ends of chromosomes following nuclear fusion. Proc. Nat. Acad. Sci. U.S.A.28, 458–463 (1942).Google Scholar
  21. — The origin and behavior of mutable loci in maize. Proc. Nat. Acad. Sci. U.S.A.36, 344–355 (1950).Google Scholar
  22. — Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol.16, 13–47 (1951).Google Scholar
  23. Neumann, J. v., andO. Morgenstern: Theory of games and economic behavior, 3rd edit. Princeton Univ. Pr. 1953.Google Scholar
  24. Rao, C. R.: Advanced statistical methods in biometrical research. John Wiley & Sons 1952.Google Scholar
  25. Rhoades, M. M.: Meiosis in maize. J. Hered.41, 58–67 (1950).Google Scholar
  26. — The effect of thebronze locus on anthocyanin in maize. Amer. Naturalist86, 105–108 (1952).Google Scholar
  27. Singleton, W. R.: Effect of continuous gamma radiation on mutation rate in maize. Genetics36, 575–576 (1951).Google Scholar
  28. — Effect of chronic gamma radiation on endosperm mutations in maize. Genetics39, 587–603 (1954).Google Scholar
  29. Stadler, L. J.: Genetic effects of X-rays in maize. Proc. Nat. Acad. Sci. U.S.A.14, 69–75 (1928).Google Scholar
  30. — Recovery following genetic deficiency in maize. Proc. Nat. Acad. Sci. U.S.A.16, 714–720 (1930).Google Scholar
  31. — The experimental modification of heredity in crop plants. Sci. Agric.11, 557–572 (1931).Google Scholar
  32. Stadler, L. J., and G. F.Sprague: Genetic effects of ultra violet radiation in maize. Proc. Nat. Acad. Sci. U.S.A.22, 572–591 (1936).Google Scholar
  33. Stadler, L. J., and F. M.Uber: Preliminary data on genetic effects of monochromatic ultra violet radiation in maize. Genetics23, 171 (1938).Google Scholar
  34. — Genetic effects of ultra violet radiation in maize IV. Comparison of monochromatic radiations. Genetics27, 84–118 (1942).Google Scholar

Copyright information

© Springer-Verlag 1956

Authors and Affiliations

  • A. C. Fabergé
    • 1
  1. 1.From the Botany DepartmentUniversity of MissouriColumbia

Personalised recommendations