Journal of Materials Science

, Volume 14, Issue 10, pp 2427–2438 | Cite as

Hot-pressed β-Si3N4 containing small amounts of Be and O in solid solution

  • C. Greskovich


Single phase, hot-pressed Si3N4 ceramics with relative densities >95% and equiaxed grain structures have been prepared from high purity Si3N4 powders having specific surface areas of 8 to 20 m2 g−1 and oxygen contents ⩾2 wt % using a small amount of Be3N2 or BeSiN2 as a densification aid. Densification depended sensitively on the concentration of Be and O in a given Si3N4 powder and on the usual hot-pressing parameters of pressure, temperature and time. A close association was found between densification and the conversion ofα- toβ-Si3N4 during hot-pressing. Based on the data presented, chemical reactions that occur during hot-pressing involve: (1) reaction of the densification aid with SiO2 on the Si3N4 particle surfaces to form BeO and Si2N2O; (2) the further reaction of these two reaction products to give probable formation of a transient liquid phase (TLP); and (3) the reaction between TLP andα-Si3N4 particles to cause densification, probably by a solution-reprecipitation process, and conversion ofα-Si3N4 into aβ-Si3N4 solid solution. The chemical composition of a single phaseβ-Si3N4 solid solution prepared in this study by hot-pressing was approximately Si2.9Be0.1N3.8O0.2.


Relative Density Oxygen Content Beryllium Be3N2 Transient Liquid Phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. W. Richerson,Ceram. Bull. 52 (1973) 560.Google Scholar
  2. 2.
    R. Kossowsky, D. G. Miller andE. S. Diaz,J. Mater. Sci. 10 (1975) 983.CrossRefGoogle Scholar
  3. 3.
    S. C. Singhai,ibid. 11 (1976) 500.CrossRefGoogle Scholar
  4. 4.
    K. H. Jack,ibid. 11 (1976) 1135.CrossRefGoogle Scholar
  5. 5.
    G. E. Gazza,Ceram. Bull. 54 (1975) 778.Google Scholar
  6. 6.
    C. Greskovich, S. Prochazka andJ. H. Rosolowski, “Basic Research on Technology Development for Sintered Ceramics,” Final Report, AFML-TR-76-179, November, 1976.Google Scholar
  7. 7.
    G. K. Layden, “Pressureless Sintering of SiAlON Gas Turbine Components,” Final Report Naval Air Systems Command Contract N62269-76-C0108, February, 1977.Google Scholar
  8. 8.
    I. C. Huseby, H. L. Lukas andG. Petzow,J. Amer. Ceram. Soc. 58 (1975) 377.CrossRefGoogle Scholar
  9. 9.
    J. A. Palm andC. Greskovich, “Silicon Nitride for Airborne Turbine Applications,” Final Report for Naval Air Systems Command, Contract No. N00019-77-C-0259, July, 1978.Google Scholar
  10. 10.
    S. Prochazka andC. Greskovich,Ceram. Bull. 57 (1978) 579.Google Scholar
  11. 11.
    K. H. Jack,Trans. J. Brit. Ceram. Soc. 72 (1973) 376.Google Scholar
  12. 12.
    L. J. Bowen, R. J. Weston, T. G. Carruthers andR. J. Brook,J. Mater. Sci. 13 (1978) 341.CrossRefGoogle Scholar
  13. 13.
    R. L. Coble,J. Appl. Phys. 41 (1970) 4798.CrossRefGoogle Scholar
  14. 14.
    R. A. Morgan andF. A. Hummel,J. Amer. Ceram. Soc. 32 (1949) 250.CrossRefGoogle Scholar
  15. 15.
    W. G. Staley andG. W. Brindley,ibid. 52 (1969) 616.CrossRefGoogle Scholar
  16. 16.
    R. F. Davis andJ. A. Pask,ibid. 44 (1972) 525.CrossRefGoogle Scholar
  17. 17.
    A. Hendry in “Nitrogen Ceramics,” edited by F. L. Riley (Noordhoff, Leyden, 1977) p. 183.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • C. Greskovich
    • 1
  1. 1.Corporate Research and DevelopmentGeneral Electric CompanySchenectadyUSA

Personalised recommendations