Journal of Materials Science

, Volume 14, Issue 10, pp 2289–2295 | Cite as

Stress corrosion behaviour of Al-Zn-Mg alloys based upon microchemical surface reactions

  • Ágnes Csanády
  • Dénes Marton


Divergences between the chemical compositions of the natural oxide layers on pure aluminium and of alloys containing magnesium have been shown with the aid of SIMS measurements. Scanning and transmission electron micrographs and electron microprobe measurements indicate the sensitizing effect of the thermal oxide layer to water vapour and this is substantiated by SIMS studies.

From published data and this investigation a further elaboration of the possible explanation for stress corrosion is proposed.


Oxide Layer Stress Corrosion Hydrogen Embrittlement Water Vapour Permeability Natural Oxide Layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Montgrain andP. M. Swann, “Hydrogen in Metals”, edited by J. M. Bernstein and A. W. Thompson, (ASM, Metals Part, Ohio, 1974) p. 575.Google Scholar
  2. 2.
    R. J. Gest andA. R. Troiano,Corrosion 30 (1974) 274.CrossRefGoogle Scholar
  3. 3.
    L. Knutsson,Corrosion 12 (1977) 447.CrossRefGoogle Scholar
  4. 4.
    K. G. Kent,Australian Inst. Metals J. 15 (1971) 171.Google Scholar
  5. 5.
    D. E. Ward andG. W. Lorimer, Proceedings of the Third International Conference on the strength of Metals and Alloys, Cambridge, (1973) Vol. 1, p. 488.Google Scholar
  6. 6.
    P. Doig, J. W. Edington andG. Hibbert,Phil. Mag. 28 (1973) 971.CrossRefGoogle Scholar
  7. 7.
    K. G. Kent,J. Inst. Metals 97 (1969) 127.Google Scholar
  8. 8.
    D. A. Vermilyea, “Fundamental aspects of stress corrosion cracking”, Proc. Conf. 1967, Ohio State University, National Association of Corrosion Engineers, Houston, (1969) p. 15.Google Scholar
  9. 9.
    K. Banizs andL. Vitalis,Z. Metallk. 68 (1977) 554.Google Scholar
  10. 10.
    D. O. Sprowls andR. H. Brown, “Fundamental aspects of stress corrosion cracking”, Proc. Conf. 1967, Ohio State University, National Association of Corrosion Engineers, Houston, (1969) p. 466.Google Scholar
  11. 11.
    C. D. S. Tuck andG. M. Scamans, “Hydrogen in Metals”, Proceedings of the 2nd International Congress, Paris, France (1977) p. 411.Google Scholar
  12. 12.
    D. A. Vermilyea, General Electric Report No. 71 c-228, 1971, (Schenectady, New York, General Electric Company).Google Scholar
  13. 13.
    J. Giber,Thin Solid Films 32 (1976) 295.CrossRefGoogle Scholar
  14. 14.
    D. Marton andÁ. Csanady,Nederlands tidschrift voor vacuum-technick 16 (1978) 47.Google Scholar
  15. 15.
    F. Pavlyak, L. Bori, J. Giber andR. Buhl,Japan. J. Appl. Phys. 16 (1977) 335.CrossRefGoogle Scholar
  16. 16.
    G. M. Scamans, R. Alani andP. R. Swann,Corros. Sci. 16 (1976) 443.CrossRefGoogle Scholar
  17. 17.
    Á. Csanády, V. Stefániay andD. Beke, accepted inJ. Mater. Sci. Eng. Google Scholar
  18. 18.
    Á. Csanády andL. Vitális,Aluminium (Düsseldorf) 54 (1978) 452.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • Ágnes Csanády
    • 1
  • Dénes Marton
    • 2
  1. 1.Research, Engineering and Prime Contracting Centre of the Hungarian Aluminium CorporationBudapestHungary
  2. 2.Institute for Physics of the Technical UniversityBudapestHungary

Personalised recommendations