Der Nachweis von spezifischen und unspezifischen Phosphatasen des Nervensystems

  • K. Felgenhauer
Article

Zusammenfassung

Zum optimalen Nachweis der Phosphatasen an Gehirnschnitten sind mit der Pb-Methode niedrige Blei- und Substratkonzentrationen notwendig. Es wurden für eine Reihe organischer Phosphate die optimalen Inkubationsbedingungen ermittelt. Dabei war zur Ausschaltung der unspezifischen alkalischen Phosphatase für den Nachweis der spezifischen Phosphatasen ATPase und 5-Nucleotidase (AMPase) eine Inkubation bei leicht sauremph besonders günstig. Der nachgewiesenen Spaltung von DPN liegt wahrscheinlich die Wirkung einer Nucleotidpyrophosphatase zugrunde. Für Glucose-6-phosphat konnte kein von den unspezifischen Phosphatasen abweichendes Muster nachgewiesen werden. Unter optimalen Bedingungen lassen sich die unspezifischen Phosphomonoesterasen im physiologischenph-Bereich nachweisen, mitunter gelingt die gleichzeitige Darstellung der sauren und alkalischen Phosphatase an einem Schnitt. Eine Reihe von Gründen sprechen gegen eine durch echte Enzymwirkung bedingte Axondarstellung mit der Pb-Methode.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ahmed, Z., andJ. L. Reis: The activation and inhibition of 5-nucleotidase. Biochem. J.69, 386–387 (1958).Google Scholar
  2. Bailey, K.: Myosin and adenosine triphosphatase. Biochem. J.36, 121–139 (1942).Google Scholar
  3. Banga, I., andA. Szent-Györgyi: The influence of salts on the phosphatase action of myosin. Stud. Inst. Med. Chem. Univ. Szeged3, 72–75 (1943).Google Scholar
  4. Barter, R.: Diffusion of alkaline phosphatase to characteristic intracytoplasmic sites of activity. Nature (Lond.)173, 1233–1234 (1954).Google Scholar
  5. Bourne, G. H.: The histochemical dephosphorylation of certain sugarphosphates, α-naphthohydroquinone diphosphate and two chalcone diphosphates. Acta anat. (Basel)22, 289–300 (1954).Google Scholar
  6. Burstone, M. S.: Histochemical demonstration of phosphatases in frozen sections with naphthol AS-phosphates. J. Histochem. Cytochem.9, 146–153 (1961).Google Scholar
  7. Clarkson, T. W., andJ. E. Kench: Uptake of lead by human erythrocytes in vitro. Biochem. J.69, 432–439 (1958).Google Scholar
  8. Crane, R. K.: The substrate specificity of liver glucose-6-phosphatase. Biochim. biophys. Acta (Amst.)17, 443–444 (1955).Google Scholar
  9. Dempsey, E. W., R. O. Greep andH. W. Deane: Changes in the distribution and concentration of alkaline phosphatases in tissues of the rat after hypophysectomy or gonadectomy, and after replacement therapy. Endocrinology44, 88–103 (1949).Google Scholar
  10. Duve, C. de, J. Berthet, H. G. Hers etL. Dupret: Le système hexose-phosphatasique. I. Existence d'une glucose-6-phosphatase spécifique dans le foie. Bull. Soc. Chim. biol. (Paris)31, 1242–1253 (1949).Google Scholar
  11. Feigin, I., A. Wolf andE. A. Kabat: Histochemical studies on tissue enzymes. VI. A difficulty in the histochemical localization of alkaline phosphatase in nuclei. Amer. J. Path.26, 647–655 (1950).Google Scholar
  12. Felgenhauer, K., u.A. Stammler: Das Verteilungsmuster der Dehydrogenasen und Diaphorasen im Zentralnervensystem des Meerschweinchens. Z. Zellforsch.58, 219–233 (1962).Google Scholar
  13. Gomori, G.: Distribution of acid phosphatase in the tissues under normal and under pathologic conditions. Arch. Path.32, 189–199 (1941).Google Scholar
  14. —— Histochemical specificity of phosphatase. Proc. Soc. exp. Biol. (N. Y.)70, 7 (1949).Google Scholar
  15. —— Microscopic histochemistry, principles and practice. Chicago: University Press 1952.Google Scholar
  16. Grogg, E., andA. G. E. Pearse: A critical study of the histochemical techniques for acid phosphatase with a description of an azo-dye method. J. Path. Bact.64, 627–636 (1952).Google Scholar
  17. Hülsmann, W. C., andE. C. Slater: Relationship between the hydrolysis of adenosine triphosphate and oxidative phosphorylation. Nature (Lond.)180, 372–374 (1957).Google Scholar
  18. Jacobson, K. B., andN. O. Kaplan: A reduced pyridine nucleotide pyrophosphatase. J. biol. Chem.226, 427–437 (1957).Google Scholar
  19. Kornberg, A., andO. Lindberg: Diphosphopyridine nucleotide pyrophosphatase. J. biol. Chem.176, 665–677 (1948).Google Scholar
  20. Lassek, A. N.: The stability of so-called axonal acid phosphatase as determined by experiments in its stainibility. Stain Technol.22, 133–138 (1947).Google Scholar
  21. Libet, B.: Adenosinetriphosphatase (ATPase) in nerve. Fed. Proc.7, 72 (1948).Google Scholar
  22. Moog, F., andH. B. Steinbach: Notes on the possibility of a histochemical method for localizing adenosinetriphosphatase. Science103, 144 (1946).Google Scholar
  23. Myers, D. K., andE. C. Slater: The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. Biochem. J.67, 558–579 (1957).Google Scholar
  24. Newman, W., I. Feigin, A. Wolf andE. A. Kabat: Histochemical studies on tissue enzymes. IV. Distribution of some enzyme systems which liberate phosphate atph 9,2 as determined with various substrates and inhibitors. Demonstration of three groups of enzymes. Amer. J. Path.26, 257–291 (1950).Google Scholar
  25. —— andA. Wolf: A difficulty in enzyme localization in the acid range due to selectiv affinity of certain tissues for lead; its dependance onph. Amer. J. Path.26, 489–503 (1950).Google Scholar
  26. Padykula, H. A., andE. Herman: The specificity of the histochemical method for adenosine triphosphatase. J. Histochem. Cytochem.3, 170–183 (1955).Google Scholar
  27. Pearse, A. G. E.: Histochemistry, theoretical and applied. London: J. and A. Churchill, Ltd. 1961.Google Scholar
  28. Portzehl, H.: Der Arbeitszyklus geordneter Aktomyosinsysteme. Z. Naturforsch.7, 1–10 (1952).Google Scholar
  29. Pratt, O. E.: Some factors affecting rat brain phosphatase activity in fresh tissue suspensions and in histochemical methods. Biochim. biophys. Acta (Amst.)14, 380–389 (1954).Google Scholar
  30. Reis, J. L.: La nucléotidase et sa relation avec la désamination des nucléotides dans le coeur et dans le muscle. Bull. Soc. Chim. biol. (Paris)16, 385–399 (1934).Google Scholar
  31. —— Studies on 5-nucleotidase and its distribution in human tissues. Biochem. J.46, XXI (1950).Google Scholar
  32. —— The specificity of phosphomonoesterases in human tissues. Biochem. J.48, 548–551 (1951).Google Scholar
  33. Ross, M. H., J. O. Ely andJ. G. Archer: Alkaline phosphatase activity andph-optima. J. biol. Chem.192, 561–568 (1951).Google Scholar
  34. Schmidt, G., andS. J. Thannhauser: Intestinal phosphatase. J. biol. Chem.149, 369–385 (1943).Google Scholar
  35. Swanson, M. A.: Phosphatases of liver. J. biol. Chem.184, 647–659 (1950).Google Scholar
  36. Thomas, E., andA. G. E. Pearse: The fine localization of dehydrogenases in the nervous system. Histochemie2, 266–282 (1961).Google Scholar
  37. Wachstein, M., andE. Meisel: Histochemistry of hepatic phosphatases at a physiologicph. Amer. J. clin. Path.27, 13–23 (1957).Google Scholar
  38. Weber, H. H., andH. Portzehl: Muscle contraction and fibrous muscle proteins. Advanc. Protein Chem.7, 161–252 (1952).Google Scholar

Copyright information

© Springer-Verlag 1963

Authors and Affiliations

  • K. Felgenhauer
    • 1
  1. 1.Neuropathologisches LaboratoriumAus der Universitäts-Nervenklinik KölnGermany

Personalised recommendations