Skip to main content
Log in

Inhibition of biopterin synthesis and DOPA production in PC-12 pheochromocytoma cells induced by 6-aminonicotinamide

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

Pheochromocytoma cells (clone PC-12) were treated with 6-aminonicotinamide. Tetrahydrobiopterin content and DOPA production of the cells were determined by reverse-phase HPLC and subsequent electrochemical detection. The same chromatographic system was used to determine total biopterin (tetrahydrobiopterin, dihydrobiopterin and quinoide dihydrobiopterin) by fluorescence detection. Tetrahydrobiopterin plays a decisive role as cofactor of tyrosine hydroxylase for the biosynthesis of DOPA and dopamine. Addition of 6-aminonicotinamide to the culture medium resulted in the accumulation of 6-phosphogluconate, suggesting that PC-12 cells synthesize 6-aminonicotinamideadenine-dinucleotide-phosphate (6-ANADP) by a glycohydrolase localized in the endoplasmic reticulum. This substance is known to be a strong inhibitor of 6-phosphogluconate dehydrogenase and leads to a blockade of the pentose phosphate pathway. In our experiments, the synthesis of biopterins was depressed after application of 6-aminonicotinamide. The decrease of intracellular tetrahydrobiopterin and total biopterin by 6-aminonicotinamide at different concentrations was strongly correlated with a reduced cellular DOPA production. The decreased content of biopterin cofactor was compensated by addition of the precursor sepiapterin, indicating that the NADPH2-dependent reductases in biopterin synthesis are not inhibited by the antimetabolite. However, DOPA production rermained suppressed at the same time. After application of NADH2, we observed an increased DOPA production though the decreased biopterin levels remained almost unchanged. The results imply that the first step in the synthesis of biopterin from GTP as well as the recycling pathway of the oxidized cofactor might be the site of action of the antimetabolite. Restriction of the synthesis of the biopterin cofactor might be a pathogenetically important disorder at the initial phase of Parkinson's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abou-Donia MM, Wilson SP, Zimmerman TP, Nichol CA, Viveros OH (1986) Regulation of guanosine triphosphate cyclohydrolase and tetrahydrobiopterin levels and the role of the cofactor in tyrosine hydroxylation in primary cultures of adrenomedullary chromaffin cells. J Neurochem 461190–1199

  • Anton AH, Sayre DF (1964) The distribution of dopamin and DOPA in various animals and a method for their determination in diverse biological material. J Pharmacol Exp Ther 145: 326–336

    Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Google Scholar 

  • Blair JA, Parveen H, Barford PA, Leeming RJ (1984) Aetiology of Parkinson's disease. Lancet 1:167

    Google Scholar 

  • Brautigam M, Dreesen R (1982) Determination ofL-erythro-tetra-hydrobiopterin in biological tissues by high pressure liquid chromatography and electrochemical detection. Hoppe-Seyler's Z Physiol Chem 363:1203–1207

    Google Scholar 

  • Bräutigam M, Dreesen R, Flosbach C-W, Herken H (1982a) Mouse neuroblastoma clone N1E-115: A suitable model for studying the action of dopamine agonists on tyrosine hydroxylase activity. Biochem Pharmacol 31:1279–1283

    Google Scholar 

  • Bräutigam M, Dreesen R, Herken H (1982b) Determination of reduced biopterins by high pressure liquid chromatography and electrochemical detection. Hoppe-Seyler's Z Physiol Chem 363:341–343

    Google Scholar 

  • Bräutigam M, Dreesen R, Herken H (1984) Tetrahydrobiopterin and total biopterin content of neuroblastoma (NIE-115, N2A) and pheochromocytoma (PC-12) clones and the dependence of catecholamine synthesis on tetrahydrobiopterin concentration. J Neurochem 42:390–396

    Google Scholar 

  • Bräutigam M, Kittner B, Herken H (1985) Evaluation of neurotropic drug actions on tyrosine hydroxylase activity and dopamine metabolism in clonal cell lines. Arzneimittelforschung 35:277–284

    Google Scholar 

  • Brunnemann A, Coper H, Neubert D (1964) Biosynthese und Wirkung des 6-Aminonicotinamidadenidinucleotids (6ANAD). Naunyn-Schmiedebergs Arch Pharmacol 246:437–451

    Google Scholar 

  • Buff K, Dairman W (1975) Biosynthesis of biopterin by two clones of mouse neuroblastoma. Mol Pharmacol 11:87–93

    Google Scholar 

  • Coper H, Herken H (1963) Schädigung des Zentralnervensystems durch Antimetaboliten des Nikotinsäureamids. Ein Beitrag zur Molekularpathologie der Pyridinukleotide. Dtsch Med Wochenschr 88:2025–2036

    Google Scholar 

  • Coper H, Neubert D (1964) Einfluβ von NADP-Analogen auf die Reaktionsgeschwindigkeit einiger NADP-bedürftiger Oxidoreduktasen. Biochem Biophys Acta 89:23–32

    Google Scholar 

  • Deshpande SS, Albuquerque EX, Kauffman FC, Guth L (1978) Physiological, biochemical and histological changes in skeletal muscle, neuromuscular junction and spinal cord of rats rendered paraplegic by subarachnoidal administration of 6-aminonicotinamide. Brain Res 140:89–109

    Google Scholar 

  • Erny RE, Berezo MW, Perlman RL (1981) Activation of tyrosine 3-monooxygenase in pheochromocytoma cells by adenosine. J Biol Chem 256:1335–1339

    Google Scholar 

  • Fukushima T, Nixon JC (1980) Analysis of reduced forms of biopterin in biological tissues and fluids. Anal Biochem 102:176–188

    Google Scholar 

  • Gál EM (1982) Biosynthesis and function of unconjugated pterins in mammalian tissues. Adv Neurochem 4:83–148

    Google Scholar 

  • Gál EM, Whitacre DH (1981) Biopterin. VII. Inhibition of synthesis of reduced biopterins and its bearing on the function of cerebral tryptophan 5-hydroxylase in vivo. Neurochem Res 6:233 -241

    Google Scholar 

  • Gál EM, Nelson SM, Sherman AD (1978) Biopterin. III. Purification and characterization of enzymes involved in the cerebral synthesis of 7,8-dihydroneopterin. Neurochem Res 3:69–88

    Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73: 2424- 2428

    Google Scholar 

  • Hassler R (1972) Physiopathology of rigidity. In: Siegfried J (ed) Parkinson's disease, vol 1. Huber, Bern Stuttgart Toronto, pp 19–45

    Google Scholar 

  • Herken H (1971) Antimetabolic action of 6-aminonicotinamide on the pentose phosphate pathway in the brain. In: Aldridge WN (ed) Mechanisms of toxicity, Macmillan, London, pp 189–203

    Google Scholar 

  • Herken H (1983) Clonale Nervenzellinien in der Kultur. Modelle zum Studium molekularer Grundlagen neuropharmakologischer Wirkungen. Klin Wochenschr 61:1–16

    Google Scholar 

  • Herken H, Neuhoff V (1964) Spektrofluorometrische Bestimmung des Einbaus von 6-Aminonicotinsäureamid in die oxydierten Pyridinnukleotide der Niere. Naunyn-Schmiedebergs Arch Pharmacol 247:187–201

    Google Scholar 

  • Herken H, Lange K, Kolbe H (1969) Brain disorders induced by pharmacological blockade of the pentose phosphate pathway. Biochem Biophys Res Commun 36:93–100

    Google Scholar 

  • Herken H, Keller K, Kolbe H, Lange K, Schneider H (1973) Experimentelle Myelopathie. Biochemische Grundlagen ihrer cellulären Pathogenese. Klin Wochenschr 51:644–657

    Google Scholar 

  • Herken H, Lange K, Kolbe H, Keller K (1974) Antimetabolic action on the pentose phosphate pathway in the central nervous system induced by 6-aminonicotinamide. In: Genazzani E, Herken H (eds) Central nervous system — studies on metabolic regulation and function. Springer, Berlin Heidelberg New York, pp 41–54

    Google Scholar 

  • Hornykiewicz O (1962) Dopamin (3-Hydroxytryptamin) im Zentralnervensystem und seine Beziehung zum Parkinson-Syndrom des Menschen. Dtsch Med Wochenschr 87:1807–1810

    Google Scholar 

  • Hornykiewicz O (1972) Neurochemistry of Parkinsonism. In: Lajtha A (ed) Handbook of neurochemistry, vol 7. Plenum Press, New York, pp 465–501

    Google Scholar 

  • Jansson SE, Gripenberg J, Härkönen M (1977) The effect of 6-aminonicotinamide blockade of the pentose phosphate pathway on catecholamines in the rat adrenal medulla, superior cervical ganglion, hypothalamus and synaptosome fractions. Acta Physiol Scand 99:467–475

    Google Scholar 

  • Kaplan NO, Ciotti MM (1954) The 3-acetylpyridine analog of DPN. J Am Chem Soc 76:1713–1714

    Google Scholar 

  • Kaplan NO, Ciotti MM (1956) Chemistry and properties of the 3-acetylpyridine analog of diphosphopyridine nucleotide. J Biol Chem 221:823–832

    Google Scholar 

  • Kaplan NO, Goldin A, Humphreys SR, Ciotti MM, Venditti JM (1954) Significance of enzymatically catalyzed exchange reactions in chemotherapy. Science 120:437–440

    Google Scholar 

  • Katoh S, Sueoka T (1984) Sepiapterin reductase exhibits a NADPH-dependent dircarbonyl reductase. Biochem Biophys Res Commun 118:859–869

    Google Scholar 

  • Kauffman FC (1970) Effects of 6-aminonicotinamide on NADP+-dependent enzymes and metabolism in mouse brain. Pharmacologist 12:222

    Google Scholar 

  • Kauffman FC, Johnson EC (1974) Cerebral energy reserves and glycolysis in neural tissue of 6-aminonicotinamide-treated mice. J Neurobiol 5:379–392

    Google Scholar 

  • Kaufman S (1959) Studies on the mechanism of the enzymatic conversion of phenylalanine to tyrosine. J Biol Chem 234: 2677–2682

    Google Scholar 

  • Kaufman S (1975) Studies on the mechanism of phenylalanine hydroxylase: Detection of an intermediate. In: Pfleiderer W (ed) Chemistry and biology of pteridines. de Gruyter, Berlin New York, pp 291–301

    Google Scholar 

  • Kehr W, Halbhiibner K, Loos D, Herken H (1978) Impaired dopamine function and muscular rigidity induced by 6-aminonicotinamide in rats. Naunyn-Schmiedebergs's Arch Pharmacol 304:317–319

    Google Scholar 

  • Keller K, Kolbe H, Herken H (1976) Glycolysis and glycogen metabolism after inhibition of hexose monophosphate pathway in C6 glial cells. Naunyn-Schmiedeberg's Arch Pharmacol 294:213–215

    Google Scholar 

  • Kolbe H, Keller K, Lange K, Herken H, with techn assistance of Gaisser H, Monden I (1977) Glucose metabolism in C-1300 neuroblastoma cells after inhibition of hexose monophosphate pathway. Naunyn-Schmiedeberg's Arch Pharmacol 296:123–130

    Google Scholar 

  • Krieglstein J, Stock R (1975) Decreased glycolytic flux rate in the isolated perfused rat brain after pretreatment with 6-aminonicotinamide in rats. Naunyn-Schmiedeberg's Arch Pharmacol 290:323–327

    Google Scholar 

  • Lange K, Kolbe H, Keller K, Herken H (1970) Der Kohlehydratstoffwechsel des Gehirns nach Blockade des Pentose-Phosphat-Weges durch 6-Aminonicotinsdureamid. Hoppe-Seyler's Z Physiol Chem 351:1241–1252

    Google Scholar 

  • Le Witt PA, Miller LP, Newman, RP, Burns RS, Insel T, Levine RA, Lovenberg W, Calne DB (1984) Tyrosine hydroxylase cofactor (tetrahydrobiopterin) in parkinsonism. In: Hassler RG, Christ JF (eds) Adv in neurology, vol 40. Raven, New York, pp 459–462

    Google Scholar 

  • Loos D, Halbhübner K, Herken H (1977) Lisuride, a potent drug in the treatment of muscular rigidity in rats. Naunyn-Schmiedeberg's Arch Pharmacol 300:195–198

    Google Scholar 

  • Loos D, Halbhübner K, Kehr W, Herken H (1979) Actio of dopamine agonists on Parkinson-like muscle rigidity induced by 6-aminonicotinamide. Neuroscience 4:667–676

    Google Scholar 

  • Lovenberg B, Jequier E, Sjoersdma A (1967) Tryptophan hydroxylation: Measurement in pineal gland, brain stem and carcinoid tumor. Science 155:217–219

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Milstien S, Kaufman S (1983) Tetrahydro-sepiapterin is an intermediate in BH4 synthesis. Biochem Biophys Res Commun 115:888–893

    Google Scholar 

  • Milstien S, Kaufman S (1985) Synthesis of tetrahydrobiopterin: Conversion of dihydroneopterin triphosphate to tetrahydropterin intermediates. Biochem Biophys Res Commun 128:1099–1107

    Google Scholar 

  • Nagatsu T (1981) Biopterin cofactor and regulation of monoaminesynthesizing mono-oxygenases. Trends Pharmacol Sci 2:276–279

    Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917

    Google Scholar 

  • Nichol CA, Smith GK, Duch DS (1985) Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Annu Rev Biochem 54:729–764

    Google Scholar 

  • Smith GK, Nichol CA (1984) Two new tetrahydropterin intermediates in the adrenal medullary de novo biosynthesis of tetrahydrobiopterin. Biochem Biophys Res Commun 120:761–766

    Google Scholar 

  • Switchenko AC, Primus JP, Brown GM (1984) Intermediates in the enzymatic synthesis inDrosophila melanogaster. Biochem Biophys Res Commun 120:754–760

    Google Scholar 

  • Takakiwa SI, Curtius HC, Redweik U, Leimbacher W, Ghisla S (1986) Biosynthesis of tetrahydrobiopterin. Purification of 6-pyruvoyl tetrahydropterin synthase from human liver. Eur J Biochem 161:295–302

    Google Scholar 

  • Vaccaro KK, Liang BT, Perelle BA, Perlman RL (1980) Tyrosine 3-monooxygenase regulates catecholamine synthesis in pheochromocytoma cells. J Biol Chem 255:6539–6541

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, W., Herken, H. Inhibition of biopterin synthesis and DOPA production in PC-12 pheochromocytoma cells induced by 6-aminonicotinamide. Naunyn-Schmiedeberg's Arch. Pharmacol. 339, 424–432 (1989). https://doi.org/10.1007/BF00736057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00736057

Key words

Navigation