Skip to main content

Crotaline pit organs analyzed as warm receptors

Abstract

Afferent impulses from single-fiber preparations of the trigeminal nerve in Agkistrodon blomhoffi brevicauduswere recorded during steady and dynamic temperature stimulation of the sensory membrane in the facial pit. The thermoreceptors of the pit showed high sensitivity to the rate of change in receptor temperature. Changing the heat capacity of the pit membrane (a drop of water in the pit in the case of the laser and halogen lamp, and a drop of water covered by a plastic film in the case of flowing water) changed the pattern of response. When the heat capacity of the pit membrane is increased, responses approach those obtained in other warm receptors. The spatial gradient theory of Williams, whereby a reversal of heat energy flow is supposed to produce a reverse of response, was shown to be inapplicable to the pit receptors. Reversal of heat energy flow in the pits produced neither off-silence nor depression of response, and therefore direction of heat flow is not an important component of the stimulus for these receptors.

This is a preview of subscription content, access via your institution.

References

  • Bleichmar, H., and de Robertis, E. (1962). Submicroscopic morphology of the infrared receptor of pit vipers.Z. Zellforsch. Mikrosk. Anat. 56748–761.

    Google Scholar 

  • Bullock, T. H. (1953). Comparative aspects of some biological transducers.Fed. Proc. Fed. Am. Socs. Exp. Biol. 12666–672.

    Google Scholar 

  • Bullock, T. H., and Barrett, R. (1968). Radiant heat reception in snakes.Commun. Behav. Biol., Part A 119–29.

    Google Scholar 

  • Bullock, T. H., and Cowles, R. B. (1952). Physiology of an infrared receptor—the facial pit of pit vipers.Science 115541–543.

    Google Scholar 

  • Bullock, T. H., and Diecke, F. P. J. (1956). Properties of an infrared receptor.J. Physiol. 13447–87.

    Google Scholar 

  • Bullock, T. H., and Fox, W. (1957). The anatomy of the infrared sense organ in the facial pit of pit vipers.Q. J. Microsc. Sci. 98219–234.

    Google Scholar 

  • De Salvo, J. A., and Hartline, P. H. (1978). Spatial properties of primary sensory neurons in Crotalidae.Brain Res. 142338–342.

    Google Scholar 

  • Goris, R. C. (1966).The reptiles of Japan. Shogakkan, Tokyo (in Japanese).

    Google Scholar 

  • Goris, R. C., and Nomoto, M. (1967). Infrared reception in oriental crotaline snakes.Comp. Biochem. Physiol. 23879–892.

    Google Scholar 

  • Harris, J. F., and Gamow, R. I. (1971). Snake infrared receptors: thermal or photochemical mechanism?Science 1721252–1253.

    Google Scholar 

  • Hartline, P. H. (1974). Thermoreception in snakes. In Fessard, A. (ed.),Handbook of Sensory Physiology, Vol 3, Springer-Verlag, New York, pp. 297–312.

    Google Scholar 

  • Hellon, R. F., Hensel, H., and Schäfer, K. (1975). Thermal receptors in the scrotum of the rat.J. Physiol. 248349–357.

    Google Scholar 

  • Hensel, H. (1973). Cutaneous thermoreceptors. In Iggo, A. (ed.),Handbook of Sensory Physiology Vol. 2, Springer-Verlag, New York, pp. 79–110.

    Google Scholar 

  • Hensel, H. (1975). Static and dynamic activity of warm receptors in Boa constrictor.Pflügers Arch. 353191–199.

    Google Scholar 

  • Hensel, H., and Huopaniemi, T. (1969). Static and dynamic properties of warm fibers in the infraorbital nerve.Pflügers Arch. 3091–10.

    Google Scholar 

  • Hensel, H., and Iggo, A. (1971). Analysis of cutaneous warm and cold fibers in primates.Pflügers Arch. 3291–8.

    Google Scholar 

  • Hensel, H., and Kenshalo, D. R. (1969). Warm receptors in the nasal region of cats.J. Physiol. 20499–112.

    Google Scholar 

  • Hensel, H., and Witt, I. (1959). Spatial temperature gradient and thermoreceptor stimulation.J. Physiol. 148180–187.

    Google Scholar 

  • Hensel, H., and Zotterman, Y. (1951). Action potentials of cold fibers and intracutaneous temperature gradient.J. Physiol. 11516–24.

    Google Scholar 

  • Nakajima, S., and Onodera, K. (1969). Membrane properties of the stretch receptor neurons of crayfish with particular reference to mechanisms of sensory adaptation.J. Physiol. 200161–185.

    Google Scholar 

  • Terashima, S., Goris, R. C., and Katsuki, Y. (1968). Generator potential of Crotaline snake infrared receptor.J. Neurophysiol. 31682–688.

    Google Scholar 

  • Terashima, S., Goris, R. C., and Katsuki, Y. (1970). Structure of warm fiber terminals in the pit membrane of vipers.J. Ultrastruct. Res. 31494–506.

    Google Scholar 

  • Terashima, S., and Goris, R. C. (1979). Receptive areas of primary infrared afferent neurons in Crotaline snakes.Neuroscience 41137–1144.

    Google Scholar 

  • Warren, J. W., and Proske, U. (1968). Infrared receptors in the facial pits of the Australian python Morelia spilotes.Science 159439–441.

    Google Scholar 

  • Williams, C.M. (1958). The ionic thermocouple theory of the mechanism of thermal sensibility. Air Univ., School of Aviation Medicine, U.S.A.F., Randolph A.F.B., Texas, Publ. No. 58-53, 1–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was made possible by aid from The Netherlands Organization for Advancement of Pure Research (ZWO).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Cock Buning, T., Terashima, Si. & Goris, R.C. Crotaline pit organs analyzed as warm receptors. Cell Mol Neurobiol 1, 69–85 (1981). https://doi.org/10.1007/BF00736040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00736040

Key words

  • warm receptors
  • thermoreceptors
  • snakes
  • Crotalinae
  • Agkistrodon