Advertisement

Cellular and Molecular Neurobiology

, Volume 1, Issue 1, pp 69–85 | Cite as

Crotaline pit organs analyzed as warm receptors

  • Tjard de Cock Buning
  • Shin-ichi Terashima
  • Richard C. Goris
Article

Abstract

Afferent impulses from single-fiber preparations of the trigeminal nerve in Agkistrodon blomhoffi brevicauduswere recorded during steady and dynamic temperature stimulation of the sensory membrane in the facial pit. The thermoreceptors of the pit showed high sensitivity to the rate of change in receptor temperature. Changing the heat capacity of the pit membrane (a drop of water in the pit in the case of the laser and halogen lamp, and a drop of water covered by a plastic film in the case of flowing water) changed the pattern of response. When the heat capacity of the pit membrane is increased, responses approach those obtained in other warm receptors. The spatial gradient theory of Williams, whereby a reversal of heat energy flow is supposed to produce a reverse of response, was shown to be inapplicable to the pit receptors. Reversal of heat energy flow in the pits produced neither off-silence nor depression of response, and therefore direction of heat flow is not an important component of the stimulus for these receptors.

Key words

warm receptors thermoreceptors snakes Crotalinae Agkistrodon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bleichmar, H., and de Robertis, E. (1962). Submicroscopic morphology of the infrared receptor of pit vipers.Z. Zellforsch. Mikrosk. Anat. 56748–761.Google Scholar
  2. Bullock, T. H. (1953). Comparative aspects of some biological transducers.Fed. Proc. Fed. Am. Socs. Exp. Biol. 12666–672.Google Scholar
  3. Bullock, T. H., and Barrett, R. (1968). Radiant heat reception in snakes.Commun. Behav. Biol., Part A 119–29.Google Scholar
  4. Bullock, T. H., and Cowles, R. B. (1952). Physiology of an infrared receptor—the facial pit of pit vipers.Science 115541–543.Google Scholar
  5. Bullock, T. H., and Diecke, F. P. J. (1956). Properties of an infrared receptor.J. Physiol. 13447–87.Google Scholar
  6. Bullock, T. H., and Fox, W. (1957). The anatomy of the infrared sense organ in the facial pit of pit vipers.Q. J. Microsc. Sci. 98219–234.Google Scholar
  7. De Salvo, J. A., and Hartline, P. H. (1978). Spatial properties of primary sensory neurons in Crotalidae.Brain Res. 142338–342.Google Scholar
  8. Goris, R. C. (1966).The reptiles of Japan. Shogakkan, Tokyo (in Japanese).Google Scholar
  9. Goris, R. C., and Nomoto, M. (1967). Infrared reception in oriental crotaline snakes.Comp. Biochem. Physiol. 23879–892.Google Scholar
  10. Harris, J. F., and Gamow, R. I. (1971). Snake infrared receptors: thermal or photochemical mechanism?Science 1721252–1253.Google Scholar
  11. Hartline, P. H. (1974). Thermoreception in snakes. In Fessard, A. (ed.),Handbook of Sensory Physiology, Vol 3, Springer-Verlag, New York, pp. 297–312.Google Scholar
  12. Hellon, R. F., Hensel, H., and Schäfer, K. (1975). Thermal receptors in the scrotum of the rat.J. Physiol. 248349–357.Google Scholar
  13. Hensel, H. (1973). Cutaneous thermoreceptors. In Iggo, A. (ed.),Handbook of Sensory Physiology Vol. 2, Springer-Verlag, New York, pp. 79–110.Google Scholar
  14. Hensel, H. (1975). Static and dynamic activity of warm receptors in Boa constrictor.Pflügers Arch. 353191–199.Google Scholar
  15. Hensel, H., and Huopaniemi, T. (1969). Static and dynamic properties of warm fibers in the infraorbital nerve.Pflügers Arch. 3091–10.Google Scholar
  16. Hensel, H., and Iggo, A. (1971). Analysis of cutaneous warm and cold fibers in primates.Pflügers Arch. 3291–8.Google Scholar
  17. Hensel, H., and Kenshalo, D. R. (1969). Warm receptors in the nasal region of cats.J. Physiol. 20499–112.Google Scholar
  18. Hensel, H., and Witt, I. (1959). Spatial temperature gradient and thermoreceptor stimulation.J. Physiol. 148180–187.Google Scholar
  19. Hensel, H., and Zotterman, Y. (1951). Action potentials of cold fibers and intracutaneous temperature gradient.J. Physiol. 11516–24.Google Scholar
  20. Nakajima, S., and Onodera, K. (1969). Membrane properties of the stretch receptor neurons of crayfish with particular reference to mechanisms of sensory adaptation.J. Physiol. 200161–185.Google Scholar
  21. Terashima, S., Goris, R. C., and Katsuki, Y. (1968). Generator potential of Crotaline snake infrared receptor.J. Neurophysiol. 31682–688.Google Scholar
  22. Terashima, S., Goris, R. C., and Katsuki, Y. (1970). Structure of warm fiber terminals in the pit membrane of vipers.J. Ultrastruct. Res. 31494–506.Google Scholar
  23. Terashima, S., and Goris, R. C. (1979). Receptive areas of primary infrared afferent neurons in Crotaline snakes.Neuroscience 41137–1144.Google Scholar
  24. Warren, J. W., and Proske, U. (1968). Infrared receptors in the facial pits of the Australian python Morelia spilotes.Science 159439–441.Google Scholar
  25. Williams, C.M. (1958). The ionic thermocouple theory of the mechanism of thermal sensibility. Air Univ., School of Aviation Medicine, U.S.A.F., Randolph A.F.B., Texas, Publ. No. 58-53, 1–16.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Tjard de Cock Buning
    • 1
  • Shin-ichi Terashima
    • 1
  • Richard C. Goris
    • 1
  1. 1.Department of PhysiologyTokyo Medical & Dental UniversityTokyoJapan

Personalised recommendations