Cellular and Molecular Neurobiology

, Volume 1, Issue 1, pp 41–55 | Cite as

Passive cable properties of hippocampal CA3 pyramidal neurons

  • Daniel Johnston


The passive electrical cable properties of CA3 pyramidal neurons from guinea pig hippocampal slices were investigated by applying current steps and recording the voltage transients from 25 CA3 neurons, using a single intracellular microelectrode and a 3-kHz time-share system. Two independent methods were used for estimating the equivalent electrotonic length of the dendrites, L, and the dendritic to somatic conductance ratio, ρ. The first method is similar to that used by Gorman and Mirolli (1972) and gave an average L of 0.96; the average ρ was 2.44. The second method is derived here for the first time and assumes a finite-length cable with lumped soma. It is an exact solution for L and ρ, using the slopes and intercepts of the first two peeled exponentials. The average L was 0.94; the average ρ was 1.51. The results, using both methods, are in close agreement. The average membrane time constant for all 25 CA3 neurons was 23.6 ms, suggesting a large (23,600 Ωcm2) average membrane resistivity. It is concluded that CA3 neurons are electronically short.

Key words

hippocampus cable theory CA3 pyramidal neurons passive membrane properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, P. (1975). Organization of hippocampal neurons and their interconnections. In Isaacson, R. L. and Pribram, K. H. (eds.),The Hippocampus, Vol. I: Structure and Development, Plenum, New York, pp. 155–175.Google Scholar
  2. Bliss, T. V. P. (1979). Synaptic plasticity in the hippocampus.Trends Neurosci. 242–45.Google Scholar
  3. Bliss, T. V. P., and Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.J. Physiol. (Lond.) 232331–356.Google Scholar
  4. Brown, T. H., Perkel, D. H., Norris, J. C., and Peacock, J. H. (1981). Electrotonic structure and specific membrane properties of mouse dorsal-root-ganglion neurons.J. Neurophysiol. 451–15.Google Scholar
  5. Brown, T. H., Wong, R. K. S., and Prince, D. A. (1979). Spontaneous miniature synaptic potentials in hippocampal neurons.Brain Res. 177194–199.Google Scholar
  6. Burke, R. E., and Ten Bruggencate, G. (1971). Electrotonic characteristics of alpha motoneurones of varying size.J. Physiol. (Lond.) 2121–20.Google Scholar
  7. Cole, K. S. (1968).Membranes, Ions and Impulses, University of California Press, Berkeley, Calif., p. 12.Google Scholar
  8. Diamond, J., Gray, E. G., and Yasargil, G. M. (1970). The function of the dendritic spine: an hypothesis. In Andersen, P., and Jansen, J. K. S. (eds.),Excitatory, Synaptic Mechanisms. Universitetsforlaget, Oslo, pp. 213–222.Google Scholar
  9. Fricke, R. A., Brown, T. H., and Prince, D. A. (1979). Electrotonic structure of hippocampal neurons.Neurosci. Abstr. 5502.Google Scholar
  10. Fujita, Y., and Iwasa, H. (1977). Electrophysiological properties of so-called inactivation response and their relationship to dendritic activity in hippocampal pyramidal cells of rabbits.Brain Res. 13089–99.Google Scholar
  11. Gorman, A. L. F., and Mirolli, M. (1972). The passive electrical properties of the membrane of a molluscan neurone.J. Physiol. (Lond.) 22735–49.Google Scholar
  12. Green, J. D. (1964). The hippocampus.Physiol. Rev. 44561–608.Google Scholar
  13. Isaacson, R. L. (1974).The Limbic System. Plenum, New York.Google Scholar
  14. Jack, J. J. B. (1979). An introduction to linear cable theory. In Schmitt, F. O., and Worden, F. G. (eds.),The Neurosciences Fourth Study Program, MIT Press, Cambridge, Mass., pp. 423–437.Google Scholar
  15. Jack, J. J. B., Noble, D., and Tsien, R. W. (1975).Electric Current Flow In Excitable Cells. Oxford University Press, London, pp. 131–224.Google Scholar
  16. Johnston, D. (1979). Passive cable properties of hippocampal neurons.Biophys. J. 25:304a.Google Scholar
  17. Johnston D., and Brown, T. H. (1981). Giant synaptic potential hypothesis for epileptiform activity.Science. 211294–297.Google Scholar
  18. Johnston, D., Hablitz, J. J., and Wilson, W. A. (1980). Voltage clamp discloses slow inward current in hippocampal burst firing neurones.Nature 286391–393.Google Scholar
  19. Kandel, E. R., and Spencer, W. A. (1961a). Excitation and inhibition of single pyramidal cells during hippocampal seizure.Exp. Neurol. 4162–179.Google Scholar
  20. Kandel, E. R., and Spencer, W. A. (1961b). Electrophysiology of hippocampal neurons II. After-potentials and repetitive firing.J. Neurophysiol. 24243–259.Google Scholar
  21. Kandel, E. R., Spencer, W. A., and Brindley, F. J. (1961). Electrophysiology of hippocampal neurons I. Sequential invasion and synaptic organization.J. Neurophysiol. 24225–242.Google Scholar
  22. Lux, H. D., and Pollen, A. (1966). Electrical constants of neurons in the motor cortex of the cat.J. Neurophysiol. 29207–220.Google Scholar
  23. Lux, H. D., Schubert, P., and Kreutzberg, G. W. (1970). Direct matching of morphological and electrophysiological data in cat spinal motoneurons. In Andersen, P., and Jansen, J. K. S. (eds.),Excitatory Synaptic Mechanisms, Universitetsforlaget, Oslo, pp. 189–198.Google Scholar
  24. Perkel, D. H., and Mulloney, B. (1978). Electrotonic properties of neurons: steady-state compartmental model.J. Neurophysiol. 41621–639.Google Scholar
  25. Purpura, D. P., Prelevic, S., and Santini, M. (1968). Hyperpolarizing increase in membrane conductance in hippocampal neurons.Brain Res. 7310–312.Google Scholar
  26. Rall, W. (1957). Membrane time constant of motoneurons.Science 126454–456.Google Scholar
  27. Rall, W. (1962). Electrophysiology of a dendritic neuron model.Biophys. J. 2(suppl.):145–167.Google Scholar
  28. Rall, W. (1969). Time constants and electrotonic length of membrane cylinders and neurons.Biophys. J. 91483–1508.Google Scholar
  29. Rall, W. (1977). Core conductor theory and cable properties of neurons. In Kandel, E. R. (ed.),Handbook of Physiology, Section I: The Nervous System, Williams & Wilkins, Baltimore, Md., pp. 39–98.Google Scholar
  30. Schwartzkroin, P. A. (1975). Characteristics of CA1 neurons recorded intracellularly in the hippocampalin vitro slice preparation.Brain Res. 85423–436.Google Scholar
  31. Schwartzkroin, P. A. (1977). Further characteristics of hippocampal CA1 cellsin vitro.Brain Res. 12853–68.Google Scholar
  32. Spencer, W. A., and Kandel, E. R. (1961a). Electrophysiology of hippocampal neurons. III. Firing level and time constant.J. Neurophysiol. 24260–271.Google Scholar
  33. Spencer, W. A., and Kandel, E. R. (1961b). Electrophysiology of hippocampal neurons IV. Fast prepotentials.J. Neurophysiol. 24272–285.Google Scholar
  34. Steinbach, J. H., and Stevens, C. F. (1976). Neuromuscular transmission. In Llinas, R., and Prech, W. (eds.),Frog Neurobiology, Springer-Verlag, New York, pp. 33–92.Google Scholar
  35. Traub, R. D., and Llinas, R. (1978). Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis.J. Neurophysiol. 42476–496.Google Scholar
  36. Wilson, W. A., and Goldner, M. M. (1975). Voltage clamping with a single microelectrode.J. Neurobiol. 6411–422.Google Scholar
  37. Wong, R. K. S., Prince, D. A., and Basbaum, A. I. (1979). Intradendritic recordings from hippocampal neurons.Proc. Natl. Acad. Sci. USA 76986–990.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Daniel Johnston
    • 1
  1. 1.Program in Neuroscience, Section of Neurophysiology, Department of NeurologyBaylor College of MedicineHoustonUSA

Personalised recommendations