Cellular and Molecular Neurobiology

, Volume 1, Issue 1, pp 19–40 | Cite as

Batrachotoxinin-A 20-α-benzoate: A new radioactive ligand for voltage sensitive sodium channels

  • George B. Brown
  • Stuart C. Tieszen
  • John W. Daly
  • Jordan E. Warnick
  • Edson X. Albuquerque


Batrachotoxinin-A 20-α-benzoate (BTX-B), an analog of the potent depolarizing agent batrachotoxin (BTX), was prepared by selective esterification of naturally occurring batrachotoxinin-A with benzoic acid. BTX-B depolarizes rat phrenic nerve-diaphragm preparations with a time course and concentration dependence virtually indistinguishable from that of BTX. A specific, saturable component of equilibrium binding of [3H]BTX-B to mouse cerebral cortex homogenates was measured, described by an equilibrium dissociation constant of 0.7 µM and a maximum number of binding sites of 90 pmol per gram of tissue (wet weight). Specific binding is inhibited by BTX and other BTX analogs, veratridine, and grayanotoxin but is unaffected by tetrodotoxin and cevine. Under conditions of this assay, neither crude Leiurus quinquestriatus scorpion venom nor purified sea anemone toxin have any effect on specific binding. The data support the conclusion that BTX-B interacts with a recognition site associated with voltage sensitive sodium channels which is identical to the recognition site for BTX.

Key words

batrachotoxin batrachotoxinin-A 20-α-benzoate sodium channels depolarizing agents tetrodotoxin scorpion toxin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnew, W. S., Levinson, S. R., Brabson, J. S., and Raftery, M. A. (1978). Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel fromElectrophorus electricus electroplax membranes.Proc. Natl. Acad. Sci. USA 752606–2610.Google Scholar
  2. Albuquerque, E. X., and McIsaac, R. J. (1970). Fast and slow mammalian muscles after denervation.Exp. Neurol. 26183–202.Google Scholar
  3. Albuquerque, E. X., Warnick, J. E., and Sansone, F. M. (1971). The pharmacology of batrachotoxin. II. Effect on electrical properties of the mammalian nerve and skeletal muscle membranes.J. Pharmacol. Exp. Ther. 176511–528.Google Scholar
  4. Albuquerque, E. X., and Warnick, J. E. (1972). The pharmacology of batrachotoxin. IV. Interaction with tetrodotoxin on innervated and chronically denervated rat skeletal muscle.J. Pharmacol. Exp. Ther. 180683–697.Google Scholar
  5. Albuquerque, E. X., and Daly, J. W. (1976). Batrachotoxin, a selective probe for channels modulating sodium conductances in electrogenic membranes. In Cuatrecasas, P., (ed.),The Specificity and Action of Animal, Bacterial and Plant Toxins (Receptors and Recognition, Series B., Vol. 1), Chapman and Hall, London, pp. 297–338.Google Scholar
  6. Bartels-Bernal, E., Rosenberry, T. L., and Daly, J. W. (1977). Effect of batrachotoxin on the electroplax of electric eel: evidence for a voltage-dependent interaction with sodium channels.Proc. Natl. Acad. Sci. USA 74951–955.Google Scholar
  7. Boegman, R. J., Deshpande, S. S., and Albuquerque, E. X. (1980). Consequences of axonal transport blockade induced by batrachotoxin on mammalian neuromuscular junction. I. Early pre- and postsynaptic changes.Brain Res. 187183–186.Google Scholar
  8. Brown, G. B., and Tieszen, S. C. (1978). Characterization of3H-BTX-B binding to murine cortex.Soc. for Neurosci. Abstracts 4244.Google Scholar
  9. Cahalan, M. D. (1975). Modification of sodium channel gating in frog myelinated nerve fibers byCentruroides sculpturatus scorpion venom.J. Physiol. 244511–534.Google Scholar
  10. Catterall, W. A. (1976). Purification of a toxic protein from scorpion venom which activates the action potential sodium ionophore.J. Biol. Chem. 2515528–5536.Google Scholar
  11. Catterall, W. A. (1977). Activation of the action potential Na+ ionophore by neurotoxins.J. Biol. Chem. 2528669–8676.Google Scholar
  12. Catterall, W. A. and Beress, L. (1978). Sea anemone toxin and scorpion toxin share a common receptor site associated with the action potential sodium ionophore.J. Biol. Chem. 2537393–7396.Google Scholar
  13. Catterall, W. A. (1979). Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle.J. Gen. Physiol. 74375–391.Google Scholar
  14. Catterall, W. A., Morrow, C. S., and Hartshorne, R. P. (1979). Neurotoxin binding to receptor sites associated with voltage-sensitive sodium channels in intact, lysed and detergent-solubilized brain membranes.J. Biol. Chem. 25411379–11387.Google Scholar
  15. Colquhoun, D., Henderson, R., and Ritchie, J. M. (1972). The binding of labeled tetrodotoxin to non-myelinated nerve fibers.J. Physiol. (Lond.) 22795–126.Google Scholar
  16. Conti, F., Hille, B., Neumcke, W., Nonner, W., and Stämpfli, R. (1976). Conductance of the sodium channel in myelinated nerve fibres with modified sodium inactivation.J. Physiol. 262729–742.Google Scholar
  17. Creveling, C. R., McNeal, E. T., McCulloh, D. H., and Daly, J. W. (1980). Membrane potentials in cell free preparations from guinea pig cerebral cortex: effect of depolarizing agents and cyclic nucleotides.J. Neurochem.,35922–932.Google Scholar
  18. Dorfman, L. M., and Wilzbach, K. E. (1979). Tritium labeling of organic compounds by means of electric discharge.J. Gen. Physiol. 55309–335.Google Scholar
  19. Evans, E. A. (1976). Self-decomposition of radiochemicals: principles, control, observations and effects. Amersham Corporation Review No. 16.Google Scholar
  20. Fatt, P., and Katz, B. (1951). Analysis of the endplate potential recorded with an intracellular electrode.J. Physiol. (Lond.) 115320–370.Google Scholar
  21. Feldman, H. A. (1972). Mathematical theory of complex ligand-binding systems at equilibrium: some methods for parameter fitting.Anal. Biochem. 48317–338.Google Scholar
  22. Hafemann, D. R., and Unsworth, B. R. (1973). Appearance of binding sites for radioactive tetrodotoxin during the development of mouse and chick brain.J. Neurochem. 20613–616.Google Scholar
  23. Hille, B. (1968). Pharmacological modifications of the sodium channels of frog nerve.J. Gen. Physiol. 51199–219.Google Scholar
  24. Huang, M., Shimizu, H., and Daly, J. W. (1972). Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 2. Effects of depolarizing agents, membrane stabilizers, phosphodiesterase inhibitors and adenosine analogs.J. Med. Chem. 15462–466.Google Scholar
  25. Jacques, Y., Fosset, M., and Lazdunski, M. (1978). Molecular properties of the action potential Na+ ionophore in neuroblastoma cells.J. Biol. Chem. 2537383–7392.Google Scholar
  26. Khodorov, B. J., and Revenko, S. V. (1979). Further analysis of the mechanism of action of batrachotoxin on the membrane of myelinated nerve.Neurosci. 41315–1330.Google Scholar
  27. Koppenhöfer, E., and Schmidt, H. (1968). Die Wirkung von Skorpiongift auf die Ionenströme des ranvierschen Schnürrings. II. Unvollständige Natrium-Inactivierung.Pflügers Arch. Eur. J. Physiol. 303150–161.Google Scholar
  28. Levinson, S. R., and Ellory, J. C. (1973). Molecular size of the tetrodotoxin binding site estimated by irradiation inactivation.Nature New Biol. 245122–123.Google Scholar
  29. Matthews, J. C., Albuquerque, E. X., and Eldefrawi, M. E. (1979). Influence of batrachotoxin, veratridine, grayanotoxin I and tetrodotoxin on uptake of Na-22 by rat brain membrane preparations.Life Sci. 251651–1658.Google Scholar
  30. Moolenaar, W. H., and Spector, J. (1978). Ionic currents in cultured mouse neuroblastoma cells under voltage clamp conditions.J. Physiol. (Lond.) 278265–286.Google Scholar
  31. Narahashi, T., Moore, J. W., and Scott, W. R. (1964). Tetrodotoxin blockade of sodium conductance increase in lobster giant axons.J. Gen. Physiol. 47965–974.Google Scholar
  32. Narahashi, T., Shapiro, B. I., Deguchi, T., Scuka, M., and Wang, C. M. (1972). Effects of scorpion venom on squid axon membranes.Am. J. Physiol. 222850–857.Google Scholar
  33. Ray, R., Morrow, C. S., and Catterall, W. A. (1978). Binding of scorpion toxins to receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles.J. Biol. Chem. 2537307–7313.Google Scholar
  34. Ritchie, J. M., and Rogart, R. B. (1977). Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath.Proc. Natl. Acad. Sci. USA 74211–215.Google Scholar
  35. Romey, G., Abita, J. P., Schweitz, H., Wunderer, G., and Lazdunski, M. (1976). Sea anemone toxin: a tool to study molecular mechanisms of nerve conduction and excitation-secretion coupling.Proc. Natl. Acad. Sci. USA 734059.Google Scholar
  36. Schmidt, H., and Schmitt, O. (1974). Effect of aconitine on the sodium permeability of the node of Ranvier.Pflügers Arch. 349133–148.Google Scholar
  37. Seyama, I., and Narahashi, T. (1973). Increase in sodium permeability of squid axon membranes byα-Dihydrograyanotoxin II.J. Pharmacol. Exp. Ther. 184299–307.Google Scholar
  38. Sundermier, H., Dolly, J. O., Albuquerque, E. X., Brown, G. B., Burgermeister, W., Daly, J., and Witkop, B. (1976). Radioactive batrachotoxin derivatives as probes of sodium channel components in electrogenic membranes.Soc. for Neurosci. Abstracts 2419.Google Scholar
  39. Tokuyama, T., Daly, J., and Witkop, B. (1969). The structure of batrachotoxin, a steroidal alkaloid from the Columbian arrow poison frog,Phyllobates aurotaenia, and partial synthesis of batrachotoxin and its analogs and homologs.J. Am. Chem. Soc. 913931–3938.Google Scholar
  40. Ulbricht, W. (1969). The effect of veratridine on excitable membranes of nerve and muscle.Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 6118–71.Google Scholar
  41. Warnick, J. E., Albuquerque, E. X., and Sansone, F. M. (1971). The pharmacology of batrachotoxin. I. Effects on the contractile mechanism and on neuromuscular transmission in mammalian skeletal muscle.J. Pharmacol. Exp. Ther. 176497–510.Google Scholar
  42. Warnick, J. E., Albuquerque, E. X., Onur, R., Jansson, S.-E., Daly, J., Tokuyama, T., and Witkop, B. (1975). The pharmacology of batrachotoxin. VII. Structure-activity relationships and the effects of pH.J. Pharmacol. Exp. Ther. 193232–245.Google Scholar
  43. Warnick, J. E., Albuquerque, E. X., and Diniz, C. R. (1976). Electrophysiological observations on the action of the purified scorpion venom, tityus toxin, on nerve and skeletal muscle of the rat.J. Pharmacol. Exp. Ther. 198155–167.Google Scholar
  44. Weigele, J. B., and Barchi, R. L. (1978). Saxitoxin binding to the mammalian sodium channel.FEBS Lett. 9549–53.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • George B. Brown
    • 1
  • Stuart C. Tieszen
    • 1
  • John W. Daly
    • 2
  • Jordan E. Warnick
    • 3
  • Edson X. Albuquerque
    • 3
  1. 1.Neurosciences ProgramUniversity of Alabama in BirminghamBirminghamUSA
  2. 2.Laboratory of Bioorganic ChemistryNIAMDD, NIHBethesdaUSA
  3. 3.Department of Pharmacology and Experimental TherapeuticsUniversity of MarylandBaltimoreUSA

Personalised recommendations