The solution to the Buffon-Sylvester problem inR3

  • R. V. Ambartzumian


Stochastic Process Probability Theory Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sylvester, J.J.: On a funicular solution of Buffons “Problem of the needle” in its most general form. Acta Math.14, 185–205 (1891)Google Scholar
  2. 2.
    Blaschke, W.: Vorlesungen über Integralgeometrie. Leipzig: Teubner 1936, 1937Google Scholar
  3. 3.
    Ambartzumian, R.V.: Intersections of complex curves and random stright lines. Dokl. Akad. Nauk SSSR, IV, 3,187 (1969). (English translation: Soviet Math. Dokl. 4,10 (1969)Google Scholar
  4. 4.
    Ambartzumian, R. V.: The method of invariant embedding in the theory of random lines (in russian). Izv. Akad. Nauk Armjan. SSR Dokl. Ser. Mat.5, 3, 263 (1970)Google Scholar
  5. 5.
    Ambartzumian, R.V.: Probability distributions in the geometry of clusters. Studia Sci. Math. Hungar.6, 235–241 (1971)Google Scholar
  6. 6.
    Santaló, L. A.: Introduction to integral geometry. Paris: Hermann 1953Google Scholar
  7. 7.
    Euler, L.: Zwei Abhandlungen über SphÄrische Trigonometrie. Leipzig: Wilhelm Engelmann 1896Google Scholar
  8. 8.
    Ambartzumian, R.V.: Convex polygons and random tessellations. In: Stochastic Geometry. New York: Wiley 1973Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • R. V. Ambartzumian
    • 1
  1. 1.Institute of MathematicsAcademy of Sciences of the Armenian Socialist Soviet RepublicErevanUSSR

Personalised recommendations