Foundations of Physics

, Volume 15, Issue 12, pp 1263–1273 | Cite as

R×S3 special theory of relativity

  • M. Carmeli


A theory of relativity, along with its appropriate group of Lorentz-type transformations, is presented. The theory is developed on a metric withR×S 3 topology as compared to ordinary relativity defined on the familiar Minkowskian metric. The proposed theory is neither the ordinary special theory of relativity (since it deals with noninertial coordinate systems) nor the general theory of relativity (since it is not a dynamical theory of gravitation). The theory predicts, among other things, that finite-mass particles in nature have maximum rotational velocities, a prediction highly supported by recent experiments on 14 nuclei, such as 159 Yb that survives fission with angular velocities of up to 0.9 of the predicted value but does not reach it.


Coordinate System Angular Velocity General Theory Recent Experiment Rotational Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein,Ann. Phys. 17, 891 (1905).Google Scholar
  2. 2.
    H. Minkowski,Phys. Z. 10, 104 (1909).Google Scholar
  3. 3.
    A. Einstein, “Autobiographical Notes,” inAlbert Einstein: Philosopher-Scientist, P. A. Schilpp, ed. (Open Court, La Salle, Illinois, 1949).Google Scholar
  4. 4.
    A. Bohr and B. Mottelson,J. Phys. Soc. Jpn. (Supp. 44, 157 (1978).Google Scholar
  5. 5.
    R. Bengtsson and S. Frauendorf,Nucl. Phys. A 327, 139 (1979).Google Scholar
  6. 6.
    G. B. Vingiani,Nuovo Cimento Lett. 32, 493 (1981).Google Scholar
  7. 7.
    K. Neergard, V. V. Pashkevich, and S. Frauendorf,Nucl. Phys. A 262, 61 (1976).Google Scholar
  8. 8.
    J. D. Garrett, G. B. Hagemann, and B. Herskind,Nucl. Phys. A 400, 113c (1983);Europhysics News (Bull. Eur. Phys. Soc.) 15, 5 (1984).Google Scholar
  9. 9.
    M. Carmeli,Nuovo Cimento Lett. 41, 551 (1984).Google Scholar
  10. 10.
    M. Carmeli,Found. Phys. 15, 889 (1985).Google Scholar
  11. 11.
    J. J. Routh,The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies, 6th edn. (Macmillan, London, 1905).Google Scholar
  12. 12.
    S. M. Harris,Phys. Rev. 138, B509 (1965).Google Scholar
  13. 13.
    R. A. Sorensen,Rev. Mod. Phys. 45, 353 (1973).Google Scholar
  14. 14.
    F. S. Stephens,Rev. Mod. Phys. 47, 43 (1975).Google Scholar
  15. 15.
    R. M. Lieder and H. Ryde, inAdvances in Nuclear Physics, E. Vogt and M. Baranger, eds., Vol. 10 (Plenum, New York, 1978).Google Scholar
  16. 16.
    I. Ozsváth and E. L. Schüking,Ann. Phys. (N.Y.) 55, 166 (1969).Google Scholar
  17. 17.
    M. Carmeli,Found. Phys. 15, 175 (1985).Google Scholar
  18. 18.
    M. Carmeli and S. Malin,Found. Phys. 15, 185 (1985).Google Scholar
  19. 19.
    M. Carmeli and S. Malin,Found. Phys. 15, 1019 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • M. Carmeli
    • 1
  1. 1.Center for Theoretical PhysicsBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations