Skip to main content
Log in

Quantization of space-time and the corresponding quantum mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

An axiomatic framework for describing general space-time models is presented. Space-time models to which irreducible propositional systems belong as causal logics are quantum (q) theoretically interpretable and their event spaces are Hilbert spaces. Such aq space-time is proposed via a “canonical” quantization. As a basic assumption, the time t and the radial coordinate r of aq particle satisfy the canonical commutation relation [t,r]=±i \(h =\). The two cases will be considered simultaneously. In that case the event space is the Hilbert space L2(ℝ3). Unitary symmetries consist of Poincaré-like symmetries (translations, rotations, and inversion) and of gauge-like symmetries. Space inversion implies time inversion. Thisq space-time reveals a confinement phenomenon: Theq particle is “confined” in an\(h =\) size region of Minkowski space\(\mathbb{M}^4\) at any time. One particle mechanics overq space-time provides mass eigenvalue equations for elementary particles. Prugovečki's stochasticq mechanics andq space-time offer a natural way for introducing and interpreting consistently such aq space-time andq particles existing in it. The mass eigenstates ofq particles generate Prugovečki's extended elementary particles. When\(h =\)0, these particles shrink to point particles and\(\mathbb{M}^4\) is recovered as the classical (c) limit ofq space-time. Conceptual considerations favor the case [t,r]=+i \(h =\), and applications in hadron physics give the fit\(h =\)⋍2/5 fermi/GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Finkelstein,Phys. Rev. D 9, 2219–2231 (1974).

    Google Scholar 

  2. C. F. von Weizsäcker, inThe Physicist's Conception of Nature, F. Mehra, ed. (D. Reidel, Dordrecht, 1973).

    Google Scholar 

  3. C. F. von Weizsäker, “Geometrie und Physik,” inPhysical Reality and Mathematical Description, C. P. Enz and F. Mehra, eds. (D. Reidel, Dordrecht, 1974).

    Google Scholar 

  4. D. Finkelsteinet al., Phys. Rev. D 9, 2231–2236 (1974).

    Google Scholar 

  5. C. F. von Weizsäkeret al., inQuantum Theory and the Structures of Time and Space, Vol. 1, L. Castell, M. Drieschner, and C. F. von Weizsäker, eds. (Carl Hanser Verlag, München, 1975).

    Google Scholar 

  6. C. F. von Weizsäkeret al., inQuantum Theory and the Structures of Time and Space, Vol. 2, L. Castell, M. Drieschner, and C. F. von Weizsäker, eds. (Carl Hanser Verlag, München, 1977).

    Google Scholar 

  7. C. F. von Weizsäkeret al., inQuantum Theory and the Structures of Time and Space, L. Castell, M. Drieschner, and C. F. von Weizsäker, eds. (Carl Hanser Verlag, München, 1979).

    Google Scholar 

  8. C. F. von Weizsäkeret al., inQuantum Theory and the Structures of Time and Space, Vol. 4, L. Castell, M. Drieschner, and C. F. von Weizsäker, eds. (Carl Hanser Verlag, München, 1981).

    Google Scholar 

  9. R. Penrose, inQuantum Gravity—An Oxford Symposium, C. F. Isham, R. Penrose, and D. W. Schiama, eds. (Clarendon, Oxford, 1975).

    Google Scholar 

  10. R. Penrose and M. A. H. MacCallum,Phys. Rep. C 6, 241–316 (1972).

    Google Scholar 

  11. H. S. Snyder,Phys. Rev. 71, 38–41 (1947).

    Google Scholar 

  12. A. Das,J. Math. Phys. 7, 52–60 (1966).

    Google Scholar 

  13. D. Atkinson and M. B. Halpern,J. Math. Phys. 8, 373–387 (1967).

    Google Scholar 

  14. S. P. Gudder,SIAM J. Appl. Math. 16, 1011–1019 (1968).

    Google Scholar 

  15. I. E. Segal, Physical and parametric space in quantum field theory, inSéminaire de Mecanique Celeste et Mecanique Analytique (1965).

  16. I. E. Segal, inSymmetries in Science, B. Gruber and R. S. Millman, eds. (Plenum, New York, 1980).

    Google Scholar 

  17. H. P. Jakobsenet al., Proc. Natl. Acad. Sci. USA 75, 1609–1611 (1978).

    Google Scholar 

  18. C. Piron,Foundations of Quantum Physics (W. A. Benjamin, Reading, Massachusetts, 1976).

    Google Scholar 

  19. S. P. Gudder, inProbabilistic Methods in Applied Mathematics, Vol. 2, A. T. Bharucha-Reid, ed. (Academic Press, New York, 1970), pp. 53–129.

    Google Scholar 

  20. M. Banai,Int. J. Theor. Phys. 20, 147–169 (1981).

    Google Scholar 

  21. M. Banai, inCurrent Issues in Quantum Logic, E. Beltrametti and B. van Fraassen, eds. (Plenum, New York, 1981).

    Google Scholar 

  22. M. Banai, inQuantum Theory and the Structures of Time and Space, Vol. 4, L. Castell, M. Drieschner, and C. F. von Weizsäker (Carl Hanser Verlag, München, 1981), and report KFKI-1981-01.

    Google Scholar 

  23. W. Cegła, inCurrent Issues in Quantum Logic, E. Beltrametti and B. van Fraassen, eds. (Plenum, New York, 1981).

    Google Scholar 

  24. W. Cegła and A. Z. Jadczyk,Commun. Math. Phys. 57, 213–217 (1977).

    Google Scholar 

  25. M. Davis,Int. J. Theor. Phys. 16, 867–874 (1977).

    Google Scholar 

  26. M. Banai,Int. J. Theor. Phys. 23, 1043–1063 (1984).

    Google Scholar 

  27. M. Banai, “Quantum Relativity Theory,” report KFKI-1983-103.

  28. E. Prugovečki,Found. Phys. 12, 555–564 (1982).

    Google Scholar 

  29. E. Prugovečki,Hadronic J. 4, 1018–1104 (1981), and references cited therein.

    Google Scholar 

  30. E. Prugovečki,Stochastic Quantum Mechanics and Quantum Space-time, (D. Reidel, Dordrecht, 1984).

    Google Scholar 

  31. M. Banai and B. Lukács,Lett. Nuovo Cimento 36, 533–538 (1983).

    Google Scholar 

  32. W. Cegła and A. Z. Jadczyk,Rep. Math. Phys. 9, 377 (1976).

    Google Scholar 

  33. A. M. Gleason,J. Math. Mech. 6, 885–893 (1957).

    Google Scholar 

  34. M. Eilers and E. Horst,Int. J. Theor. Phys. 13, 419–424 (1975).

    Google Scholar 

  35. W. Cegła and A. Z. Jadczyk,Lett. Math. Phys. 3, 109–112 (1979).

    Google Scholar 

  36. C. E. Rickart,General Theory of Banach Algebras (Van Nostrand, New York, 1960).

    Google Scholar 

  37. G. W. Mackey,The Mathematical Foundations of Quantum Mechanics (W. A. Benjamin, New York, 1963).

    Google Scholar 

  38. R. M. Santilli,Found. Phys. 11, 383–472 (1981).

    Google Scholar 

  39. R. M. Santilli,Lett. Nuovo Cimento 33, 145–153 (1982).

    Google Scholar 

  40. D. Finkelstein, inQuantum Theory and the Structures of Time and Space, Vol. 4, L. Castell, M. Drieschner, and C. F. von Weizsäker, eds. (Carl Hanser Verlag, München, 1981).

    Google Scholar 

  41. J. von Neumann,Ann. Math. 33, 567 (1932).

    Google Scholar 

  42. J. von Neumann,Mathematical Foundation of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1955), pp. 235–236.

    Google Scholar 

  43. M. Banai, report KFKI-1982-74.

  44. L. D. Landau and E. M. Lifshitz,Quantum Mechanics (Pergamon Press, London, 1958).

    Google Scholar 

  45. S. S. Schweber,An Introduction to Relativistic Quantum Field Theory (Harper and Row, New York, 1961).

    Google Scholar 

  46. I. Saavedra and C. Utreras,Phys. Lett. 98B, 74–76 (1981).

    Google Scholar 

  47. P. Roman, inQuantum Theory and the Structures of Time and Space, Vol. 3, L. Castell, M. Drieschner, and C. F. von Weizsäker, eds. (Carl Hanser Verlag, München, 1979).

    Google Scholar 

  48. M. Banai,Hadronic J. 5, 1812–1841 (1982);5, 2155 (1982) (erratum).

    Google Scholar 

  49. G. Takeuti, inCurrent Issues in Quantum Logic, E. Beltrametti and B. van Fraassen, eds. (Plenum, New York, 1981).

    Google Scholar 

  50. M. Banai, “An unconventional extension of the canonical quantization method for local field theories,” in Proc. of the Int. Symposium on Quantum Field Theory, F. Mancini, ed. (North-Holland, Amsterdam, 1986) (in print) (preprint KFKI-1985-75).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is a revised version of the author's work, “Quantization of Space-time and the Corresponding Quantum Mechanics (Part I),” report KFKI-1981-48.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banai, M. Quantization of space-time and the corresponding quantum mechanics. Found Phys 15, 1203–1245 (1985). https://doi.org/10.1007/BF00735531

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00735531

Keywords

Navigation