Journal of Paleolimnology

, Volume 14, Issue 2, pp 165–184 | Cite as

Siliceous microfossil succession in the recent history of two basins in Lake Baikal, Siberia

  • Mark B. Edlund
  • E. F. Stoermer
  • Cynthia H. Pilskaln


As part of the international cooperative Baikal Drilling Project, siliceous microfossil assemblage succession was analyzed in two short (∼ 30-cm) sediment cores from Lake Baikal. One core was recovered from the north basin (Core 324, 55°15′N, 109°30′E), a second from between the central and southern basins (Core 316, 52°28′N, 106°5′E). The northern core had higher amounts of biogenic silica (40 g SiO2 per 100 g dry weight sediment) compared to the southern core, and increased deposition in the more recent sediments. Weight percent biogenic silica was lower in the southern core, ranging from approximately 20–30 g SiO2 per 100 g dry weight sediment throughout the entire core. Trends in absolute microfossil abundance mirror those of biogenic silica, with generally greater abundance in the northern core (86–275×106 microfossils g−1 dry sediment) compared to the southern core (94–163×106 microfossils g−1 dry sediment).

Cluster analyses using relative abundance of the dominant diatom and chrysophyte taxa revealed four zones of microfossil succession in each core. Microfossil assemblage succession in the north basin may be reflecting shifts in nutrient supply and cycling driven by climatic changes. The most recent sediments in the northern basin (Zone 1,c. 1890's–1991 A.D.) were characterized by an increased abundance ofAulacoseira baicalensis andAulacoseira ‘spore’. Zone 3 (c. 1630's–1830's A.D.) was dominated by the endemicCyclotella spp. and reduced abundance of theAulacoseira spp. Zone 3 corresponds approximately to the Little Ice Age, a cooler climatic period. The microfossil assemblages between Zones 1 and 3 (Zone 2,c. 1830's–1890's A.D.) and below Zone 3 (Zone 4,c. 830's–1430's A.D.) are similar to one another suggesting they represent transitional intervals between warm and cold periods. Southern basin sediments record similar changes in the endemic taxa. However, the increased abundance of non-endemic planktonic taxa (e.g.Stephanodiscus binderanus, Synedra acus, Cyclostephanos dubius) during two periods in recent history (post World War II and late 1700's) suggests evidence for anthropogenic induced changes in southern Lake Baikal.

Key words

Lake Baikal Russia paleolimnology diatoms chrysophyte cysts Little Ice Age climate change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battarbee, R. W., 1973. A new method for estimating absolute microfossil numbers with special reference to diatoms. Limnol. Oceanogr. 18: 647–653.Google Scholar
  2. Belt, D., 1992. The World's Great Lake. National Geographic 181: 2–39.Google Scholar
  3. Bondarenko, N. A., N. E. Guselnikova, S. S. Vorobyeva & N. F. Logacheva, 1993. Species composition of planktonic diatom algae of Lake Baikal and biology of dominant species. In Fifth Workshop on Diatom Algae: Diatom algae as indicators of the changes of climate and environment. Russian Academy of Sciences, Siberian Division, Irkutsk: 72–75.Google Scholar
  4. Bradbury, J. P. & K. V. Dieterich-Rurup, 1993. Holocene diatom paleolimnology of Elk Lake, Minnesota. In J. P. Bradbury & W. E. Dean (eds), Elk Lake, Minnesota: evidence for rapid climate change in the North-Central United States. Geol. Soc. Amer. Spec. Paper No. 276. Geol. Soc. Amer., Boulder, Colorado: 215–237.Google Scholar
  5. Bradbury, J. P., Ye. V. Bezrukova, G. P. Chernyaeva, S. M. Colman, G. Khursevich, J. W. King & Ye. E. Likoshway, 1994. A synthesis of post-glacial diatom records from Lake Baikal. J. Paleolim. 10: 213–252.Google Scholar
  6. Carney, H., 1982. Algal dynamics and trophic interactions in the recent history of Frains Lake, Michigan. Ecology 63: 1814–1826.Google Scholar
  7. Chernyaeva, G. P., 1970. Diatoms in the bottom sediments of northern Lake Baikal. In Bottom Deposits of Baikal. Academy of Sciences, Moscow: 144–160. (in Russian)Google Scholar
  8. Conley, D. J. & C. L. Schelske, 1993. Potential role of sponge spicules in influencing the silicon biogeochemistry of Florida lakes. Can. J. Fish. aquat. Sci. 50: 296–302.Google Scholar
  9. Edgington, D. N., J. V. Klump, J. A. Robbins, Y. S. Kusner, V. D. Pampura & I. V. Sandimirov, 1991. Sedimentation rates, residence times and radionuclide inventories in Lake Baikal from137Cs and210Pb in sediment cores. Nature 350: 601–604.Google Scholar
  10. Eggimen, D. W., F. T. Manheim & P. R. Betzer, 1980. Dissolution and analysis of amorphous silica in marine sediments. J. sed. Petrol. 50: 215–225.Google Scholar
  11. Flower, R. J., 1993. A taxonomic re-evaluation of endemicCyclotella taxa in Lake Baikal, Siberia. Nova Hedwigia Beih. 106: 203–220.Google Scholar
  12. Foged, N., 1993. Some diatoms from Siberia especially from Lake Baikal. Diatom Research 8: 231–279.Google Scholar
  13. Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.Google Scholar
  14. Galazii, G., 1991. Lake Baikal reprieved. Endeavour, New Series 15: 13–17.Google Scholar
  15. Genkal, S. I. & G. I. Popovskaya, 1991. New data on the frustule morphology ofAulacoseira islandica (Bacillariophyta). Diatom Research 6: 255–266.Google Scholar
  16. Granina, L. Z., M. A. Grachev, E. B. Karabanov, V. M. Kuptsov, M. K. Shimaraeva & D. F. Williams, 1993. Accumulation of biogenic silica in bottom sediments of Baikal. Russian Geology and Geophysics 34: 126–135.Google Scholar
  17. Khotinskiy, N. A., 1984. Holocene climatic change. In Velichko, A. A. (ed.), Late Quaternary Environments of the Soviet Union. University of Minnesota Press, Minneapolis: 305–309.Google Scholar
  18. Khursevich, G. K., 1989. Species Atlas.Stephanodiscus andCyclostephanos (Bacillariophyta) from Upper Cenozoic sediments, USSR. Science and Techniques, Minsk, 86 pp, 80 pl. (in Russian)Google Scholar
  19. Kociolek, J. P. & E. F. Stoermer, 1988. Taxonomy and systematic position of theGomphoneis quadripunctata species complex. Diatom Research 3: 95–108.Google Scholar
  20. Kozhov, M. M., 1963. Lake Baikal and its Life. Dr W. Junk Publishers, The Hague, 344 pp.Google Scholar
  21. Kozhova, O. M., N. A. Shastina & G. S. Kaplina, 1982. Size characteristics ofMelosira islandica ssp.helvetica O. Müll. from Lake Baikal. Hydrobiological J. 18: 6–10.Google Scholar
  22. Kuzmin, M. I., D. F. Williams, N. A. Logachev, S. Colman, B. N. Khakhaev, T. Kawai, P. Hearn, Sh. Horie, L. A. Pevzner, A. A. Bukharov & V. A. Fialkov, 1993. The Barkal Drilling Project: Scientific objectives and recent results. Russian Geology and Geophysics 34: 3–11.Google Scholar
  23. Lake Baikal Paleoclimate Project Members, 1992. Initial results of U.S.-Soviet paleoclimate study of Lake Baikal. EOS, Trans. am. geophys. Union 73: 457–462.Google Scholar
  24. Leinen, M., 1977. A normative calculation technique for determining opal in deep-sea sediments. Geoch. Cosmoch. Acta 41: 671–676.Google Scholar
  25. Likhoshway, Ye., T. Nikiteeva, G. Pomazkina & Ye. Meleshko, 1993. Fossil diatom algae of Lake Baikal. In Fifth Workshop on Diatom Algae: Diatom algae as indicators of the changes of climate and environment. Russian Academy of Sciences, Siberian Division, Irkutsk: 95–98.Google Scholar
  26. Lorefice, G. J. & M. Munawar, 1974. The abundance of diatoms in the southwestern nearshore region of Lake Ontario during the spring thermal bar period. Proc. 17th Conf. Great Lakes Res. 1974: 619–628.Google Scholar
  27. Lund, J. W. G., 1966. The role of the turbulence in the seasonal cycle of some freshwater species ofMelosira. Bot. Zh. 51: 176–187. (in Russian)Google Scholar
  28. Lydolph, P. E., 1977. Climates of the Soviet Union. World Survey of Climatology; Vol. 7. Elsevier Scientific Pub. Co., Amsterdam, 443 pp.Google Scholar
  29. Maatela, P., J. Paasivirta, M. A. Grachev & E. B. Karabanov, 1990. Organic chlorine compounds in lake sediments. V. Bottom of Baikal near a pulp mill. Chemosphere 21: 1381–1384.Google Scholar
  30. Makarova, I. V. & G. V. Pomazkina, 1992.Stephanodiscus inconspicuus. Algologia 2: 84–86. (in Russian)Google Scholar
  31. Mortlock, R. A. & P. N. Froelich, 1989. A simple method for the rapid determination of biogenic:opal in pelagic marine sediments. Deep Sea Res. 36: 1415–1426.Google Scholar
  32. Peck, J. A., J. W. King, S. M. Colman & V. A. Kravchinsky, 1994. A rock-magnetic record from Lake Baikal, Siberia: Evidence for Late Quaternary climate change. Earth Plan. Sci. Lett. 122: 221–238.Google Scholar
  33. Pilskaln, C. H. & J. Paduan, 1992. Laboratory techniques for the handling and geochemical analysis of water column particulate and surface sediment samples. MBARI Tech. Rept. No. 92–9, 22 pp.Google Scholar
  34. Popovskaya, G. I., 1991. Phytoplankton of Lake Baikal and its long-term changes (1958–1990). Dissertation Abstract: Academy of Sciences, Siberian Division, Central Siberian Botanical Garden, Novosibirsk, 32 pp. (in Russian)Google Scholar
  35. Popovskaya, G., 1993. Planktonic diatom algae of Lake Baikal and their long-term monitoring. In Fifth Workshop on Diatom Algae: Diatom algae as indicators of the changes of climate and environment. Russian Academy of Sciences, Siberian Division, Irkutsk: 114–116.Google Scholar
  36. Riasanovsky, N. V., 1984. A History of Russia, 4th Ed. Oxford University Press, New York, 695 pp.Google Scholar
  37. Shimaraev, M. N., N. G. Granin & A. A. Zhdanov, 1993. Deep ventilation of Lake Baikal waters due to spring thermal bars. Limnol. Oceanogr. 38: 1068–1072.Google Scholar
  38. Skvortzow, B. W., 1937. Bottom diatoms from Olhon Gate of Baikal Lake, Siberia. Philipp. J. Sci. 62: 293–377.Google Scholar
  39. Skvortzow, B. W. & C. I. Meyer, 1928. A contribution to the diatoms of Baikal Lake. Proc. Sungaree River Biological Station. 1: 1–55.Google Scholar
  40. Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. int. Ver. Limnol. 23: 837–844.Google Scholar
  41. Stoermer, E. F. & J. J. Yang, 1969. Plankton diatom assemblages in Lake Michigan. Univ. of Michigan, Ann Arbor, Michigan, Great Lakes Research Division Special Rep. No. 47, 168 pp.Google Scholar
  42. Stoermer, E. F., R. G. Kreis & L. Sicko-Goad, 1981. A systematic, quantitative, and ecological comparison ofMelosira islandica O. Müll. withM. granulata (Ehr.) Ralfs from the Laurentian Great Lakes. J. Great Lakes Res. 7: 345–356.Google Scholar
  43. Stoermer, E. F., J. A. Wolin, C. L. Schelske & D. J. Conley, 1985a. Postsettlement diatom succession in the Bay of Quinte, Lake Ontario. Can. J. Fish. aquat. Sci. 42: 754–767.Google Scholar
  44. Stoermer, E. F., J. A. Wolin, C. L. Schelske & D. J. Conley, 1985b. An assessment of ecological changes during the recent history of Lake Ontario based on siliceous algal microfossils preserved in the sediments. J. Phycol. 21: 257–276.Google Scholar
  45. Stoermer, E. F., J. P. Kociolek, C. L. Schelske & D. J. Conley, 1985c. Siliceous microfossil succession in the recent history of Lake Superior. Proc. Acad. nat. Sci. Philad. 137: 106–118.Google Scholar
  46. Stoermer E. F., Q. Yu-zao & T. B. Ladewski, 1986. A quantitative investigation of shape variation inDidymosphenia (Lyngbye) M. Schmidt (Bacillariophyta). Phycologia 25: 494–502.Google Scholar
  47. Stoermer, E. F., C. L. Schelske & J. A. Wolin, 1990. Siliceous microfossil succession in the sediments of McLeod Bay, Great Slave Lake, Northwest Territories. Can. J. Fish. aquat. Sci. 47: 1865–1874.Google Scholar
  48. Stoermer, E. F., J. A. Wolin & C. L. Schelske, 1993. Paleolimnological comparison of the Laurentian Great Lakes based on diatoms. Limnol. Oceanogr. 38: 1311–1316.Google Scholar
  49. Stoermer, E.F., M. B. Edlund, C. H. Pilskaln & C. L. Schelske, 1995. Siliceous microfossil distribution in the surficial sediments of Lake Baikal. J. Paleolim. (in press).Google Scholar
  50. Weiss, R. F., E. C. Carmack & V. M. Koropalov, 1991. Deep-water renewal and biological production in Lake Baikal. Nature 349: 665–669.Google Scholar
  51. Wilkinson, L., 1989. SYSTAT: The System for Statistics. SYSTAT, Inc., Evanston, IL, 638 pp.Google Scholar
  52. Williams, D. F., L. Qui, E. Karabanov & A. Gvozdkov, 1993. Geochemical indicators of productivity and sources of organic matter in surficial sediments of Lake Baikal. Russian Geology and Geophysics 34: 111–125.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Mark B. Edlund
    • 1
  • E. F. Stoermer
    • 1
  • Cynthia H. Pilskaln
    • 2
  1. 1.Center for Great Lakes and Aquatic SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Department of OceanographyUniversity of MaineOronoUSA

Personalised recommendations