Journal of Paleolimnology

, Volume 14, Issue 2, pp 151–163 | Cite as

An assessment of recent trophic changes in Windermere South Basin (England) based on diatom remains and fossil pigments

  • Sergi Sabater
  • Elizabeth Y. Haworth


Cyanobacterial carotenoids and diatom remains have been analyzed in recent sediments from the Windermere South Basin (WSB) to study the trophic evolution experienced by the lake. Dates in the top 30 cm were specifically established through radionuclide (210Pb and137Cs) analyses. Diatom stratigraphy shows dominance of the centric diatomsCyclotella comensis andC. radiosa and several benthic taxa in the early postglacial. This indicates oligotrophy in the WSB during that period. This assemblage was replaced by another dominated by the diatomAsterionella formosa in the 1870's, as has been established from the210Pb dating. From that date onwards, the lake underwent a progression towards eutrophy, indicated by the progressive increase inAulacoseira subarctica (c. 1930's),Fragilaria crotonensis (c. 1943), and more recently, of the centricsStephanodiscus parvus (c. 1971) andCyclotella meneghiniana (1988).

Carotenoid stratigraphy reveals the differences between different sections of the core. Oscillaxanthin and myxoxanthophyll had very low records in the early and medium parts of the core, but increased fromc. 1950's, showing peaks atc. 1967, 1979 and 1987. Some of these peaks indicated a differential abundance ofOscillatoria, and are matched to those observed directly during the ongoing monitoring of the phytoplankton of the lake.

The coincidence between the historic appearance of diatoms associated with nutrient-rich waters and the enhanced carotenoid occurrence suggest a common response to phosphorus enrichment, and that the progressive change towards eutrophy has been accentuated during the last twenty-five years.

Key words

chlorophyll diatoms myxoxanthophyll oscillaxanthin sediments eutrophication England paleolimnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleby, P. G. & F. Oldfield, 1983. The assessment of210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29–35.Google Scholar
  2. Barber, H. G. & E. Y. Haworth, 1981. A guide to the morphology of the diatom frustule. Freshwater Biol. Assoc., Sc. Publ. 44.Google Scholar
  3. Battarbee, R. W., 1986. Diatom analyses. In: Handbook of Holocene Paleoecology and Paleohydrology. B. E. Berglund (ed.). John Wiley & Sons, NY.Google Scholar
  4. Birks, H. J. B. & B. E. Berglund, 1979. Holocene pollen stratigraphy of southern Sweden: a reappraisal using numerical methods. Boreas 8: 257–279.Google Scholar
  5. Bennett, K. D., S. Boreham, H. J. Sharp, V. R. Switsur, 1992. Holocene history of environment, vegetation and human settlement on Catta Ness, Lunnasting, Scotland. J. Ecol. 80: 241–273.Google Scholar
  6. Box, G. E. P. & D. R. Cox, 1964. An analysis of transformations. J. Royal Statist. Soc. (B) 26: 211–252.Google Scholar
  7. Brugam, R. B. & C. Patterson, 1983. The A/C (Araphidineae/Centrales) ratio in high and low alkalinity lakes in eastern Minnesota. Freshwat. Biol. 13: 47–55.Google Scholar
  8. Engstrom, D. R., E. B. Swain & J. C. Kingston, 1985. A paleolimnological record of human disturbance from Harvey's Lake, Vermont: geochemistry, pigments and diatoms. Freshwat. Biol. 15: 261–288.Google Scholar
  9. Ganf, G. G., S. I. Heaney & J. Corry, 1991. Light absorption and pigment content in natural populations and cultures of a non-gas vacuolate cyanobacteriumOscillatoria bourrellyi (=Tychonema bourrellyi). J. Plankton Res. 13: 1101–1121.Google Scholar
  10. Godward, M., 1937. An ecological and taxonomic investigation of the littoral algal flora of Lake Windermere. J. Ecol. 25: 496–568.Google Scholar
  11. Griffiths, M. & W. T. Edmonson, 1975. Burial of oscillaxanthin in the sediment of Lake Washington. Limnol. Oceanogr. 20: 945–52.Google Scholar
  12. Griffiths, M., 1978. Specific blue-green algal carotenoids in sediments of Esthwaite Water. Limnol. Oceanogr. 23: 777–784.Google Scholar
  13. Haworth, E. Y., 1980. Comparison of continuous phytoplankton records with the diatom stratigraphy in the recent sediments of Blelham Tarn. Limnol. Oceanogr. 25: 1093–1103.Google Scholar
  14. Heaney, S. I., 1987. The influence of lake morphology and algal composition on nitrogen cycling and hypolimnetic deoxygenation (abstract). Schweiz Z. Hydrol. 49: 384–385.Google Scholar
  15. Hertzberg, S., S. Liaaen-Jensen & H. W. Siegelman, 1971. The carotenoids of the bluegreen algae. Phytochemistry 10: 3121–3127.Google Scholar
  16. Hickman, M. & Ch. E. Schweger, 1991. Oscillaxanthin and myxoxanthophyll in two cores from Lake Wabamun, Alberta, Canada. J. Paleolimnol. 5: 127–137.Google Scholar
  17. Hustedt, F., 1930–1966. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. Teil 1–3. In: L. Rabenhorst's Kryptogamen Flora von Deutschlands, Österreichs und der Schweiz Band 7, Leipzig.Google Scholar
  18. Kaland, P. E. & B. Stabell, 1981. Methods for absolute diatom frequency analysis and combined diatom and pollen analysis in sediments. Nord. J. Botany 1: 697–700.Google Scholar
  19. Kilham, P., S. S. Kilham & R. E. Hecky, 1986. Hypothesized resource relationships among African planktonic diatoms. Limnol. Oceanogr. 31: 1169–1181.Google Scholar
  20. Lund, J. W. G., 1955. Further observations on the seasonal cycle ofMelosira italica (Ehr.) Kütz.) subsp.subarctica O. Müll. J. Ecol. 43: 90–102.Google Scholar
  21. Lund, J. W. G., 1972. Eutrophication. Proc. r. Soc. London, sect. B, 180: 371–382.Google Scholar
  22. Macan, T. T., 1970. Biological studies of the English Lakes, 260 pp. Longman.Google Scholar
  23. Macan, T. T., 1984. The British Lakes. In: F. B. Taub (ed.). Lakes and reservoirs: pp. 205–230. Elsevier, Amsterdam.Google Scholar
  24. Mackereth, F. J. H., 1969. A short core sampler for subaqueous deposits. Limnol. Oceanogr. 14: 145–151.Google Scholar
  25. Mackereth, F. J. H., 1971. On the variation in direction of the horizontal component of remanent magnetisation in lake sediments. Earth Planet. Sci. Lett. 12: 332–338.Google Scholar
  26. Mills, C. A., S. I. Heaney, C. Butterwick, J. E. Corry & J. M. Elliot, 1990. Lake enrichment and the status of Windermere charr,Salvelinus alpinus (L.). J. Fish Biol. 37 (Suppl. A), 167–174.Google Scholar
  27. Pearsall, W. H. & W. Pennington, 1973. The Lake District. Collins (New Naturalist), London, 320 pp.Google Scholar
  28. Pennington, W., 1943. Lake sediments: the bottom deposits of the north basin of Windermere, with special reference to the diatom succession. New Phytol. 42: 1–27.Google Scholar
  29. Pennington, W., 1973. The recent sediments of Windermere. Freshwat. Biol. 3: 363–382.Google Scholar
  30. Pennington, W., 1991. Palaeolimnology in the English Lakes — some questions and answers over fifty years. Hydrobiologia 214: 9–24.Google Scholar
  31. Ramsbottom, A. E., 1976. Depth charts of the Cumbrian Lakes. Scient. Public. Freshwat. Biol. Assoc., No. 33, 39 pp.Google Scholar
  32. Reynolds, C. S., H. R. Morison & C. Butterwick, 1982. The sedimentary flux of phytoplankton in the South Basin of Windermere. Limnol. Oceanogr. 27: 1162–1175.Google Scholar
  33. Ridley-Thomas, C. I., A. Austin, W. M. P. Lucey & M. J. R. Clark, 1989. Variability in the determination of ash free dry weight for periphyton communities: a call for a standard method. Wat. Res. 23: 667–670.Google Scholar
  34. Round, F. E., 1957. Studies on bottom-living algae in some lakes of the English Lake District. 2. The distribution of Bacillariophyceae on the sediments. J. Ecol. 45: 343–360.Google Scholar
  35. Stockner, J., 1972. Paleolimnology as a means of assessing eutrophication. Ver. int. Ver. Limnol. 18: 1018–1030.Google Scholar
  36. Stumm, W. & J. J. Morgan, 1981. Aquatic chemistry. John Wiley & Sons, New York. 780 pp.Google Scholar
  37. Sutcliffe, D. W. & T. R. Carrick, 1983. Chemical composition of water-bodies in the English Lake District: relationships between chloride and other major ions related to solid geology, and a tentative budget for Windermere. Freshwat. Biol. 13: 323–352.Google Scholar
  38. Swain, E. B., 1985. Measurement and interpretation of sedimentary pigments. Freshwat. Biol. 3: 363–382.Google Scholar
  39. Talling, J. F., 1993. Comparative seasonal changes, and inter-annual variability and stability, in a 26-year record of total phytoplankton biomass in four English lake basins. Hydrobiologia 268: 65–98.Google Scholar
  40. Talling, J. F. & S. I. Heaney, 1988. Long-term changes in some English (Cumbrian) Lakes subjected to increased nutrient inputs. In: F. E. Round (ed.) Algae and the aquatic environment: 1–29. Biopress Ltd, Bristol.Google Scholar
  41. Tett, P., S. I. Heaney & M. R. Droop, 1985. The Redfield ratio and phytoplankton growth rate. J. mar. biol. Assoc. U.K 65: 487–504.Google Scholar
  42. Tilman, D., R. Kiesling, R. Sterner, S. S. Kilham & F. A. Johnson, 1986. Green, bluegreen, and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol. 106: 473–485.Google Scholar
  43. Yacobi, Y. Z., R. F. C. Mantoura & C. A. Llewellyn, 1991. The distribution of chlorophylls, carotenoids and their breakdown products in Lake Kinneret. Freshwat. Biol. 26: 1–10.Google Scholar
  44. Züllig, H. 1989. Role of carotenoids in lake sediments for reconstructing trophic history during the late Quaternary. J. Paleolimnol. 2: 23–40.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Sergi Sabater
    • 1
  • Elizabeth Y. Haworth
    • 2
  1. 1.Department d'EcologiaFacultat de BiologiaBarcelonaSpain
  2. 2.Institute of Freshwater EcologyAmblesideUK

Personalised recommendations