Skip to main content
Log in

Inhibition of the nicotinic acetylcholine receptor by barbiturates and by procaine: Do they act at different sites?

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The effects of three barbiturates and the local anesthetic procaine on the ion channel function of mouse nicotinic acetylcholine receptor (nAChR) muscle subtype expressed inXenopus laevis oocytes were examined by whole-cell voltage-clamp technique.

  2. 2.

    A concentration-response curve for the specific nicotinic agonist dimethylphenylpiperazinium iodide (DMPP) was first determined. This agonist produced increasing whole-cell currents up to a concentration of 100µM (EC50 = 13µM), then decreased responses at higher concentrations.

  3. 3.

    The barbiturates (amobarbital, secobarbital, pentobarbital) and procaine produced reversible inhibition of DMPP-induced currents at clinically used concentrations. The two classes of drugs differed in the voltage dependence of the inhibition: procaine-induced inhibition was increased at more negative transmembrane holding potentials (-90 vs. -45 mV); whereas amobarbital-induced inhibition did not vary at different transmembrane potentials.

  4. 4.

    Mutant forms of the nAChR, containing single amino acid changes in the M2 regions ofα andβ subunits, showed increased sensitivity to procaine but no change in sensitivity to amobarbital-induced inhibition.

  5. 5.

    These electrophysiologic studies provide further evidence that barbiturates and local anesthetics produce inhibition of the nAChR at different sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akabas, M. H., Stauffer, D. A., Xu, M., and Karlin, A. (1992). Acetylcholine receptor channel structure probed in cysteine-substitution mutants.Science 258307–310.

    Google Scholar 

  • Albuquerque, E. X., Kuba, K., and Daly, J. (1974). Effect of histrionicotoxin on the ion conductance modulator of the cholinergic receptor: A quantitative analysis of the end-plate current.Eur. J. Pharm. 440–46.

    Google Scholar 

  • Albuquerque, E. X., Tsai, M.-C., Aronstam, R., Witkop, B., Eldefrawi, A. T., and Eldefrawi, M. E. (1980). Sites of action of phencyclidine. II. Interaction with the ionic channel of the nicotinic receptor.Mol. Pharm. 18167–178.

    Google Scholar 

  • Anand, R., Conroy, W. G., Schoepfer, R., Whiting, P., and Lindstrom, J. (1991). Neuronal nicotinic acetylcholine receptors expressed inXenopus oocytes have a pentameric quaternary structure.J. Biol. Chem. 26611192–11198.

    Google Scholar 

  • Andreasen, T. J., and McNamee, M. G. (1980). Inhibition of ion permeability control properties of acetylcholine receptor fromTorpedo californica by long-chain fatty acids.Biochemistry 194719–4726.

    Google Scholar 

  • Bertrand, D., Ballivet, M., and Rungger, D. (1990). Activation and blocking of neuronal nicotinic acetylcholine receptors inXenopus oocytes.Proc. Natl. Acad. Sci. USA 871992–1997.

    Google Scholar 

  • Bonta, I. L., Goorissen, F. H., and Berkx, F. H. (1968). Pharmacologic interactions between pancuronium bromide and anesthetics.Eur. J. Pharm. 483–91.

    Google Scholar 

  • Boyd, N. D., and Cohen, J. B. (1984). Desensitization of membrane-boundTorpedo acetylcholine receptor by amine noncompetitive antagonists and aliphatic alcohols: Studies of [3H]acetylcholine binding and22Na+ ion fluxes.Biochemistry 23(18): 4023–4033.

    Google Scholar 

  • Bradley, R., Peper, K., and Sterz, R. (1980). Postsynaptic effects of ethanol at the frog neuromuscular junction.Nature 28460–62.

    Google Scholar 

  • Buccafusco, J. J., and Brezenoff, H. E. (1980). Opposing influences on behavior mediated by muscarinic and nicotinic receptor in the rat hypothalamic nucleus.Psychopharmacology 67249–254.

    Google Scholar 

  • Butterworth, J. F., IV, and Strichartz, G. R. (1990). Molecular mechanisms of local anesthesia: A review.Anesthesiology 72711–734.

    Google Scholar 

  • Changeux, J. P., Devillers-Thierry, A., and Chermouille, P. (1984). Acetylcholine receptor: an allosteric protein.Science 2251335–1345.

    Google Scholar 

  • Changeux, J.-P., Benoit, P., Bessis, A., Cartaud, J., Devillers-Thierry, A., Fontaine, B., Galzi, J. L., Klarsfeld, A., Laufer, R., and Mulle, C. (1990). The acetylcholine receptor: functional architecture and regulation.Adv. Sec. Mess. Phospro. Res. 2415–27.

    Google Scholar 

  • Charnet, P., Labarca, C., Leonard, R. J., Vogelaar, N. J., Czyzyk, L., Gouin, A., Davidson, N., and Lester, H. A. (1990). An open-channel blocker interacts with adjacent turns ofα-helices in the nicotinic acetylcholine receptor.Neuron 287–95.

    Google Scholar 

  • Clark, P. B., and Kumar, R. (1983). The effects of nicotine on locomotor activity in non-tolerant and tolerant rats.Br. J. Pharmacol. 78329–337.

    Google Scholar 

  • Cooper, E., Couturier, S., and Ballivet, M. (1991). Pentameric structure and stoichiometry of a neuronal nicotinic acetylcholine receptor.Nature 350235–238.

    Google Scholar 

  • Crankshaw, D. P., Boyd, M. D., and Bjorksten, A. R. (1987). Plasma drug efflux—a new approach to optimization of drug infusion for constant blood concentration of thiopental and methohexital.Anesthesiology 6732–41.

    Google Scholar 

  • Daly, J. W., Karle, J., Myers, C. W., Tokuyama, T., Waters, J. A., and Witkop, B. (1971). Histrionicotoxins: Roentgen-ray analysis of the novel allenic and acetylenic spiroalkaloids isolated from a Colombian frog,Dendrobates histrionicus.Proc. Natl. Acad. Sci. USA 681870–1875.

    Google Scholar 

  • Dodson, B. A., and Braswell, L. M. (1991). Temperature-dependent changes in barbiturate interactions with neuronal nicotinic receptors.Ann. N.Y. Acad. Sci. 625649–652.

    Google Scholar 

  • Dodson, B. A., Braswell, L. M., and Miller, K. W. (1987). Barbiturates bind to an allosteric regulatory site on nicotinic acetylcholine receptor-rich membranes.Mol. Pharm. 32119–126.

    Google Scholar 

  • Dodson, B. A., Urh, R. R., and Miller, K. W. (1990). Relative potencies for barbiturate binding toTorpedo acetylcholine receptor.Br. J. Pharm. 101710–714.

    Google Scholar 

  • Firestone, L. L., Miller, J. C., and Miller, K. W. (1986). Appendix,Molecular and Cellular Mechanisms of Anesthetics, Plenum, New York.

    Google Scholar 

  • Forman, S. A., and Miller, K. W. (1989). Molecular sites of anesthetic action in postsynaptic nicotinic membranes.Trends Pharm Sci. 10447–452.

    Google Scholar 

  • Gage, P. W. (1976). Generation of end-plate potentials.Physiol Rev. 56177–247.

    Google Scholar 

  • Gage, P. W., and McKinnon, D. (1985). Effects of pentobarbitone on acetylcholine-activated channels in mammalian muscle.Br. J. Pharm. 85229–235.

    Google Scholar 

  • Giraudat, J., Dennis, M., Heidmann, T., Haumont, Y., Lederer, F., and Changeux, J.-P. (1987). Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H]Chlopromazine labels homologous residues in theβ andδ chains.Biochem. 262410–2418.

    Google Scholar 

  • Giraudat, J., Galzi, J.-L., Revah, F., Changeux, J.-P., Haumont, P.-Y., and Lederer, F. (1989). The noncompetitive blocker [3H]chlorpromazine labels segment M2 but not segment M1 of the nicotinic acetylcholine receptorα-subunit.FEBS Lett. 253190–198.

    Google Scholar 

  • Goldman, D., Deneris, E., Luyten, W., Kochhar, A., Patrick, J., and Heinemann, S. (1987). Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system.Cell 48865–973.

    Google Scholar 

  • Gundersen, C. B., Miledi, R., and Parker, I. (1984). Messenger RNA from human brain induces drug- and voltage-operated channels inXenopus oocytes.Nature 308421–424.

    Google Scholar 

  • Gurdon, J. B., Lane, C. D., Woodland, H. R., and Marbaix, G. (1971). Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells.Nature 233177–182.

    Google Scholar 

  • Heidmann, T., Oswald, R. E., and Changeux, J.-P. (1983). Multiple sites of action for noncompetitive blockers on acetylcholine receptor rich membrane fragments fromTorpedo marmorata.Biochemistry 223112–3127.

    Google Scholar 

  • Herz, J. M., Johnson, D. A., and Taylor, P. (1989). Distance between the agonist and noncompetitive inhibitor sites on the nicotinic acetylcholine receptor.J. Biol. Chem. 26412439–12448.

    Google Scholar 

  • Hollmann, M., O'Shea-Greenfield, S. W., Rogers, S. W., and Heinemann, S. (1989). Cloning by functional expression of a member of the glutamate receptor family.Nature 342643–648.

    Google Scholar 

  • Imoto, K., Methfessel, C., Sakmann, B., Mishina, M., Mori, Y., Konno, T., Fukuda, K., Kurasaki, M., Bujo, H., Fujita, Y., and Numa, S. (1986). Location of aδ-subunit region determining ion transport through the acetylcholine receptor channel.Nature 324670–674.

    Google Scholar 

  • Karpen J. W., and Hess, G. P. (1986). Cocaine, phencyclidine and procaine inhibition of the acetylcholine receptor: Characterization of the binding site by stopped-flow measurements of receptor-controlled ion flux in membrane vesicles.Biochemistry 251777–1785.

    Google Scholar 

  • Koblin, D. D., and Lester, H. A. (1979). Voltage-dependent and voltage-independent blockade of acetylcholine receptors by local anesthetics inElectrophorus electroplaques.Mol. Pharm. 15559–580.

    Google Scholar 

  • Lee-son, S., Waud, B. E., and Waud, D. R. (1975). A comparison of the potencies of a series of barbiturates at the neuromuscular junction and on the central nervous system.J. Pharmacol. Exp. Ther. 195251–256.

    Google Scholar 

  • Leonard, R. J., Labarca, C. G., Charnet, P., Davidson, N., and Lester, H. A. (1988). Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor.Science 2421578–1581.

    Google Scholar 

  • Maricq, A. V., Peterson, A. S., Brake, A. J., Myers, R. M., and Julius, D. (1991). Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel.Science 254432–437.

    Google Scholar 

  • Melton, D. (1984). Efficientin vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter.Nucleic Acids Res. 127035–7056.

    Google Scholar 

  • Mishina, M., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S. (1984). Expression of functional acetylcholine receptor from cloned cDNAs.Nature 307604–608.

    Google Scholar 

  • Oswald, R. E., Heidmann, T., and Changeux, J.-P. (1983). Multiple affinity states for noncompetitive blockers revealed by [3H]phencyclidine binding to acetylcholine receptor rich membrane fragments fromTorpedo marmorata.Biochemistry 223128–3136.

    Google Scholar 

  • Pick, E. P., and Richards, G. V. (1947). Synergism of anesthetics and hypnotics with curare and curare-like agents.J. Pharmacol. Exp. Ther. 901–10.

    Google Scholar 

  • Roth, S. H., Forman, S. A., Braswell, L. M., and Miller, K. W. (1989). Actions of pentobarbital enantiomers on nicotinic cholinergic receptors.Mol. Pharm. 36874–880.

    Google Scholar 

  • Takeyasu, K., Shiono, S., Udgaonkar, J., Fujita, N., and Hess, G. P. (1986). Acetylcholine receptor: characterization of the voltage-dependent regulatory (inhibitory) site for acetylcholine in membrane vesicles fromTorpedo californica electroplax.Biochemistry 251770–1776.

    Google Scholar 

  • Taylor, P. (1985). Neuromuscular blocking agents.Goodman and Gilman's The Pharmacologic Basis of Therapeutics, 7th ed., Macmillan, New York, pp. 222–235.

    Google Scholar 

  • Thesleff, S. (1956). The effect of anesthetic agents on skeletal muscle membrane.Acta Physiol. Scand. 37335–349.

    Google Scholar 

  • Valenzuela, C. F., Kerr, J. A., Duvvuri, P., and Johnson, D. A. (1992). Modulation of phencyclidine-sensitive ethidium binding to theTorpedo acetylcholine receptor: interaction of noncompetitive inhibitors with carbamylcholine and cobraα-toxin.Mol. Pharm. 41331–336.

    Google Scholar 

  • Whitehouse, P. J. (1988). Specific neurochemical systems and memory.Neurobiol. Aging 9639–640.

    Google Scholar 

  • Young, A. P., and Sigman, D. S. (1982). Allosteric effects of volatile anesthetics on the membrane-bound acetylcholine receptor protein.Mol. Pharm. 20498–505.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yost, C.S., Dodson, B.A. Inhibition of the nicotinic acetylcholine receptor by barbiturates and by procaine: Do they act at different sites?. Cell Mol Neurobiol 13, 159–172 (1993). https://doi.org/10.1007/BF00735372

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00735372

Key words

Navigation