Skip to main content

Theory of electromechanical effects in nerve

Summary

  1. 1.

    The electromechanical transduction mechanisms operating in nerve membranes are considered theoretically.

  2. 2.

    For mechanical-to-electrical transduction (mechanical generator potentials), a model is proposed in which the surface charge on the membrane mediates stress-induced changes in the intramembrane electric field, thus opening transmembrane ion conductance channels or reducing the ion selectivity of the membrane via leak conductance pathways.

  3. 3.

    For electrical-to-mechanical transduction (axon diameter change with excitation), an investigation into two well-known electrostatic properties of dielectrics, electrostriction and piezoelectricity, in the context of the nerve membrane is undertaken which predicts a few percent change in axon dimensions for voltage- and space-clamped axons.

This is a preview of subscription content, access via your institution.

References

  • Abraham-Shrauner, B. (1975). Generalized Gouy-Chapman potential of charged phospolipid membranes with divalent cations.J. Math. Biol. 2333–339.

    Google Scholar 

  • Adams, E. P. (1911). On electrostriction.Phil. Mag. 22889–900.

    Google Scholar 

  • Armstrong, C. M., and Bezanilla, F. (1973). Currents related to movement of the gating particles of the sodium channels.Nature 242459–461.

    Google Scholar 

  • Bezanilla, F., White, M. M., and Taylor, R. E. (1982). Gating currents associated with potassium channel activation.Nature 296657–659.

    Google Scholar 

  • Bockris, J. O'M, and Reddy, A. K. N. (1970).Modern Electrochemistry, Plenum Press, New York.

    Google Scholar 

  • Bryant, S. H., and Tobias, J. M. (1955). Optical and mechanical concomitants of activity in carcinius nerve.J. Cell Comp. Physiol. 4671–95.

    Google Scholar 

  • Cady, W. G. (1946).Piezoelectricity, McGraw-Hill, New York.

    Google Scholar 

  • Coakley, W. T., Bater, A. J., and Deeley, J. O. T. (1978). Vesicle production on heated and stressed erythrocytes.Biochim. Biophys. Acta 512318–330.

    Google Scholar 

  • Cohen, L. B. (1973). Changes in neuron structure during action potential propagation and synaptic transmission.Physiol. Rev. 53373–418.

    Google Scholar 

  • Cohen, L. B., and Keynes, R. D. (1971). Changes in light scattering associated with the action potential in crab nerves.J. Physiol. (Lond.) 212259–275.

    Google Scholar 

  • Cohen, L. B., Hille, B., Keynes, R. D., Landowne, D., and Rojas, E. (1971). Analysis of the potential-dependent changes in optical retardation in the squid giant axon.J. Physiol. (Lond.) 218205–237.

    Google Scholar 

  • Cohen, L. B., Keynes, R. D., and Landowne, D. (1972). Changes in axon light scattering that accompany the action potential: Current dependent components.J. Physiol. (Lond.) 224727–752.

    Google Scholar 

  • Cole, K. S. (1968).Membranes, Ions, and Impulses, University of California Press, Berkeley.

    Google Scholar 

  • Diamond, J., Gray, J. A. B., and Inman, D. R. (1958). The relation between receptor potentials and the concentration of sodium ions.J. Physiol. (Lond.) 142362–364.

    Google Scholar 

  • Edwards, C., Terzuolo, C. A., and Washizu, Y. (1963). The effect of changes of the ionic environment upon an isolated crustacean sensory neuron.J. Neurophysiol. 26948–957.

    Google Scholar 

  • Elul, R. (1967). Fixed charge in the cell membrane.J. Physiol. (Lond.) 189351–356.

    Google Scholar 

  • Evans, E. A., and Skalak, R. (1979). Mechanics and thermodynamics of biomembranes.Crit. Rev. Bioeng. 3181–418.

    Google Scholar 

  • Ganot, G., Wong, B. S., Binstock, L., and Ehrenstein, G. (1981). Reversal potentials corresponding to mechanical stimulation and leakage current inMyxicola giant axons.Biochim. Biophys. Acta. 649487–491.

    Google Scholar 

  • Gilbert, D. C., and Ehrenstein, G. (1969). Effect of divalent cations on potassium conductance of squid axons: Determination of surface charge.Biophys. J. 9447–463.

    Google Scholar 

  • Goldman, D. E. (1943). Potential, impedance, and rectification in membranes.J. Gen. Physiol. 2737–60.

    Google Scholar 

  • Goldman, D. E. (1965). The transducer action of mechanoreceptor membranes.Symp. Quant. Biol. 3059–68.

    Google Scholar 

  • Grahame, D. C. (1947). The electrical double layer and the theory of electrocapillarity.Chem. Rev. 41441–501.

    Google Scholar 

  • Gross, D. J., and Williams, W. S. (1978). Piezoelectric theory of electromechanical effects in nerve. Paper TU-AM-F15 given at the 22nd Annual Meeting of the Biophysical Society, Washington, D.C.

  • Hermans, P. G. (1949). Gels. InColloid Science, Vol. II (Kryut, H. R., Ed.), Elsevier, New York, pp. 483–651.

    Google Scholar 

  • Hill, B. C., Schubert, E. D., Nokes, M. A., and Michelson, R. P. (1977). Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential.Science 196426–428.

    Google Scholar 

  • Hill, D. K. (1950). The volume change resulting from stimulation of a giant nerve fiber.J. Physiol. (Lond.) 111304–327.

    Google Scholar 

  • Hochmuth, R. M. (1982). Solid and liquid behavior of red cell membrane.Ann. Rev. Biophys. Bioeng. 1143–55.

    Google Scholar 

  • Hochmuth, R. M., Mohandas, N., and Blackshear, P. L., Jr. (1973). Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique.Biophys. J. 13747–762.

    Google Scholar 

  • Hodgkin, A. L. (1951). The ionic basis of electrical activity in nerve and muscle.Biol. Rev. 26339–409.

    Google Scholar 

  • Iwasa, K., and Tasaki, I. (1980). Mechanical changes in squid giant axon associated with production of action potentials.Biochem. Biophys. Res. Comm. 951328–1331.

    Google Scholar 

  • Iwasa, K., Tasaki, I., and Gibbons, R. C. (1980). Swelling of nerve fibers associated with action potentials.Science 210338–339.

    Google Scholar 

  • Jackson, J. D. (1975).Classical Electrodynamics, John Wiley and Sons, New York.

    Google Scholar 

  • Julian, F. J., and Goldman, D. E. (1962). The effects of mechanical stimulation on some electrical properties of axons.J. Gen. Physiol. 46297–313.

    Google Scholar 

  • Junge, D. (1976).Nerve and Muscle Excitation, Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Kemble, E. C. (1916). Notes on the end effect in the electrostriction of cylindrical condensers.Phys. Rev. 7614–624.

    Google Scholar 

  • Landau, L. D., and Lifshitz, E. M. (1960).Electrodynamics of Continuous Media, Pergamon Press, Oxford.

    Google Scholar 

  • Loewenstein, W. R., Terzuolo, C. A., and Washizu, Y. (1963). Separation of transduction and impulsegenerating processes in sensory receptors.Science 1421180.

    Google Scholar 

  • McLaughlin, S. L. (1977). Electrostatic potentials at membrane-solution interfaces.Curr. Top. Memb. Transp. 971–144.

    Google Scholar 

  • McLaughlin, S., and Poo, M. (1981). The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells.Biophys. J. 3485–93.

    Google Scholar 

  • Miller, C. (1982). Coupling of water and ion fluxes in a K+-selective channel of sarcoplasmic reticulum.Biophys. J. 38227–230.

    Google Scholar 

  • Obara, S. (1968). Effects of some organic cations on generator potential of crayfish stretch receptor.J. Gen. Physiol. 52363–386.

    Google Scholar 

  • Rojas, E., and Atwater, I. (1968). An experimental approach to determine membrane charges in squid giant axons.J. Gen. Physiol. 51131s-135s.

    Google Scholar 

  • Rojas, E., and Keynes, R. D. (1975). On the relation between displacement currents and activation of the sodium conductance in the squid giant axon.Phil. Trans. Roy. Soc. (Lond.) B 270459–482.

    Google Scholar 

  • Singer, S. J., and Nicholson, G. L. (1972). The fluid mosaic model of the structure of cell membranes.Science 175720–731.

    Google Scholar 

  • Stepanov, K. A. (1968). Shortening of the frog sciatic nerve on stimulation.Biophysics 13634–636.

    Google Scholar 

  • Stratton, J. A. (1941).Electromagnetic Theory, McGraw-Hill, New York.

    Google Scholar 

  • Tasaki, I., and Iwasa, K. (1980). Shortening of nerve fibers associated with propagated nerve impulse.Biochem. Biophys. Res. Comm. 94716–720.

    Google Scholar 

  • Tasaki, I., Iwasa, K., and Gibbons, R. C. (1980). Mechanical changes in crab nerve fibers during action potential.Japan. J. Physiol. 30897–905.

    Google Scholar 

  • Webb, W. W. (1981). Luminescence measurements of macromolecular mobility.Ann. N.Y. Acad. Sci. 366300–314.

    Google Scholar 

  • Wells, J. B., and Goldman, D. E. (1981). Membrane potential changes during stretch in squid giant axons.Biophys. J. 33:91a.

    Google Scholar 

  • White, S. H. (1974). Comments on “Electrical breakdown of bimolecular lipid membranes as an electromechanical instability.”Biophys. J. 14155–158.

    Google Scholar 

  • Yantorno, R. E., Takashima, S., and Mueller, P. (1982). Dipole moment of alamethicin as related to voltage-dependent conductance in lipid bilayers.Biophys. J. 38105–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gross, D., Williams, W.S. & Connor, J.A. Theory of electromechanical effects in nerve. Cell Mol Neurobiol 3, 89–111 (1983). https://doi.org/10.1007/BF00735275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00735275

Key words

  • mechanoreception
  • bioelectromechanics
  • membrane surface charge
  • theoretical model
  • electrostriction
  • piezoelectricity