Advertisement

Foundations of Physics

, Volume 16, Issue 1, pp 51–61 | Cite as

Energy transport and the Fourier heat law in classical systems

  • Giulio Casati
Article

Abstract

The energy transport in one-dimensional nonlinear systems is discussed. By numerically studying a model system, we verify the Fourier heat law on purely dynamical grounds and we compute the coefficient of thermal conductivity K. The same value ofK is independently obtained by use of the Green-Kubo formalism.

Keywords

Fourier Thermal Conductivity Nonlinear System Classical System Energy Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Peierls,Ann. Phys. (Leipzig) 5, 1055 (1929);Quantum Theory of Solids (Oxford University Press, Oxford, 1956).Google Scholar
  2. 2.
    P. G. Bergmann and J. L. Lebowitz,Phys. Rev. 99, 578 (1965); J. L. Lebowitz,Phys. Rev. 114, 1192 (1959); Z. Rieder, J. L. Lebowitz, and E. Lieb,J. Math. Phys. 8, 1073 (1967); A. Casher and J. L. Lebowitz,J. Math. Phys. 12, 1701 (1971).Google Scholar
  3. 3.
    R. H. G. Hellemann, “Heat Transport in Harmonic and Anharmonic Lattices,” thesis, Yeshiva University (1971).Google Scholar
  4. 4.
    N. Nakazawa,Prog. Theor. Phys. Suppl. 45, 231 (1970); K. R. Allen and J. Ford,Phys. Rev. 187, 1132 (1969).Google Scholar
  5. 5.
    G. Casati,Nuovo Cimento B 52, 257 (1979); I. Guarneri,Boll. Unione Mat. Ital. 17B, 1034 (1980).Google Scholar
  6. 6.
    J. Ford, unpublished.Google Scholar
  7. 7.
    A. Casher and J. L. Lebowitz,J. Math. Phys. 12, 1701 (1971).Google Scholar
  8. 8.
    H. Matsuda and K. Ishii,Prog. Theor. Phys. Suppl. 45, 56 (1970); K. Ishii,Prog. Theor. Phys. Suppl. 53, 77 (1973).Google Scholar
  9. 9.
    D. N. Payton, M. Rich, and W. M. Visscher,Phys. Rev. 160, 706 (1967).Google Scholar
  10. 10.
    V. M. Visscher,Prog. Theor. Phys. 46, 729 (1971).Google Scholar
  11. 11.
    A. J. O'Connor and J. L. Lebowitz,J. Math. Phys. 15, 692 (1974).Google Scholar
  12. 12.
    R. J. Bell,Rep. Prog. Phys. 35, 1315 (1972).Google Scholar
  13. 13.
    J. L. Lebowitz and H. Spohn, “Transport Properties of the Lorentz Gas: Fourier's Law,” preprint; E. B. Davies, “A Model of Heat Conduction,” preprint (1977).Google Scholar
  14. 14.
    W. M. Visscher, inMethods in Computational Physics, Vol. 15 (Academic Press, New York, 1976) pp. 371–408.Google Scholar
  15. 15.
    E. A. Jackson, J. R. Pasta, and J. F. Waters,J. Comput Phys. 2, 207 (1968).Google Scholar
  16. 16.
    K. Miura, Ph.D. Thesis, University of Illinois, Urbana (1973).Google Scholar
  17. 17.
    D. N. Payton, M. Rich, and W. M. Visscher, inLocalized Excitations in Solids, R. F. Wallis, ed. (Plenum, New York, 1968), pp. 657–664; M. Rich, W. M. Visscher, and D. N. Payton,Phys. Rev. A 4, 1682 (1971).Google Scholar
  18. 18.
    S. A. Rice, private communication.Google Scholar
  19. 19.
    G. Casati, J. Ford, W. M. Visscher, and F. Vivaldi,Phys. Rev. Lett. 52, 1861 (1984).Google Scholar
  20. 20.
    G. Casati, J. Ford, W. M. Visscher, and F. Vivaldi: “Energy Propagation in One-Dimensional System: Validity of Fourier Law,” preprint.Google Scholar
  21. 21.
    G. Casati and J. Ford,J. Comput. Phys. 20, 97 (1976).Google Scholar
  22. 22.
    A. Hobson,J. Math. Phys. 16, 2210 (1975).Google Scholar
  23. 23.
    R. Aizemann, S. Goldstein, and J. Lebowitz,Commun. Math. Phys. 39, 289 (1975).Google Scholar
  24. 24.
    W. M. Visscher,Phys. Rev. A 10, 2461 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Giulio Casati
    • 1
  1. 1.Dipartimento di Fisica dell'UniversitàMilanoItaly

Personalised recommendations