Foundations of Physics

, Volume 16, Issue 1, pp 27–38 | Cite as

Quantum principles in field interactions

  • D. V. Shirkov


The concept of quantum principle is introduced as a principle whose formulation is based on specific quantum ideas and notions. We consider three such principles, viz, those of quantizability, local gauge symmetry, and supersymmetry, and their role in the development of the quantum field theory (QFT). Concerning the first of these, we analyze the formal aspects and physical contents of the renormalization procedure in QFT and its relation to ultraviolet divergences and the renorm group. The quantizability principle is formulated as an existence condition of a self-consistent quantum version with a given mechanism of the field interaction. It is shown that the consecutive (from a historical point of view) use of these quantum principles puts still larger limitations on possible forms of field interactions.


Field Theory Quantum Field Theory Renorm Group Gauge Symmetry Existence Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. V. Shirkov,Fiz. Elem. Chastits At. Yadra 14, 1063–1072 (1983).Google Scholar
  2. 2.
    P. A. M. Dirac,The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1958), 4th edn., end of Sec. 81; P. A. M. Dirac,Directions in Physics (Wiley, New York, 1978), end of the 2nd lecture.Google Scholar
  3. 3.
    G. 'tHooft,Phys. Rep. 104, 129–159 (1984); Y. Nambu,Phys. Rep. 104, 237–358 (1984).Google Scholar
  4. 4.
    P. C. West,Supersymmetry and Finiteness (Lecture given at Shelter Island, New York, June 1983).Google Scholar
  5. 5.
    T. Gustafson,Ark. Math. Fys. A 34, No. 2 (1946); E. R. Speer,J. Math. Phys. 9, 1404 (1968).Google Scholar
  6. 6.
    G. 'tHooft and M. Veltman,Nucl. Phys. B 44, 189 (1972).Google Scholar
  7. 7.
    S. L. Sobolev,Mat. Sb. 1(43), 39 (1936).Google Scholar
  8. 8.
    L. Schwarz,Theorie des distributions (Dunod, Paris, 1950).Google Scholar
  9. 9.
    N. N. Bogolubov and O. S. Parasiuk,Acta Math. 97, 227 (1957).Google Scholar
  10. 10.
    N. N. Bogolubov and D. V. Shirkov,Introduction to the Theory of Quantized Fields (Wiley-Interscience, New York, 1979), 3rd edn., §§. 29 and 30.Google Scholar
  11. 11.
    S. Coleman and E. Weinberg,Phys. Rev. D 7, 1888–1910 (1973).Google Scholar
  12. 12.
    D. Bardinet al., Yad. Fiz. 35, 1220 (1982).Google Scholar
  13. 13.
    N. Bohr,Phys. Rev. 48, 696–702 (1935); N. Bohr, “Quantum Physics and Philosophy,” inPhilosophy in the Mid-Century: A Survey (Firenze, 1958), pp. 308–314.Google Scholar
  14. 14.
    D. V. Shirkov, “The Renormalization Group Method and Functional Self-Similarity in Physics,” inNonlinear and Turbulent Processes in Physics R. Sagdeev, ed., Vol. 3 (Harwood Academic Publishers, New York, 1984), pp. 1637–1642.Google Scholar
  15. 15.
    N. N. Bogolubov and D. V. Shirkov,Dokl. Akad. Nauk SSSR 103, 203–206 (1955);Nuovo Cimento 3, 845 (1956).Google Scholar
  16. 16.
    E. C. Stueckelberg and A. Petermann,Helv. Phys. Acta 26, 499–520 (1953).Google Scholar
  17. 17.
    M. Gell-Mann and F. Low,Phys. Rev. 95, 1300 (1954).Google Scholar
  18. 18.
    K. Wilson,Rev. Mod. Phys. 55, 583–599 (1983).Google Scholar
  19. 19.
    P. S. Howe, K. S. Stelle, and P. C. West,Phys. Lett. B 127, 353 (1983).Google Scholar
  20. 20.
    S. Hawking,CERN Courier 21, 73 (1981).Google Scholar
  21. 21.
    A. Einstein, “Über den wartigen Stand der Feld-Theorie,” inFestschrift Professor Aurela Stodola zum 70. Geburtstag, E. Honeger, ed. (Grell Fussli Verlag, Zürich and Leipzig, 1929), p. 126.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • D. V. Shirkov
    • 1
  1. 1.Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchMoscowUSSR

Personalised recommendations