Cellular and Molecular Neurobiology

, Volume 3, Issue 1, pp 17–26 | Cite as

Inhibition of dopamine-activated adenylate cyclase and dopamine binding by opiate receptors in rat striatum

  • S. Gentleman
  • M. Parenti
  • N. H. Neff
  • C. B. Pert


  1. 1.

    Low-affinity (micromolar)3H-dopamine binding was measured under conditions which permitted dopamine activation and opiate inhibition of adenylate cyclase in rat striatal membranes. Opiate drugs and peptides inhibited the dopamine binding in the presence of both GTP5 and Gpp(NH)p. Opiate inhibition of adenylate cyclase was, however, observed only in the presence of GTP.

  2. 2.

    It is suggested that the dopamine D1 receptor in striatum may be modulated by the opiate delta receptor through a shared guanine nucleotide binding subunit.


Key words

dopamine opiates adenylate cyclase striatum 

Abbreviations used




ethylene glycol bis(β-aminoethyl ether)


isobutyl methylaxanthine


guanosine 5′-triphosphate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biggio, G., Casu, M., Corda, M. G., Dibello, C., and Gessa, G. L. (1978). Stimulation of dopamine synthesis in caudate nucleus by intrastriatal enkephalins and antagonism by naloxone.Science 200552–554.Google Scholar
  2. Blume, A. J., Lichtschein, D., and Boone, G. (1979). Coupling of opiate receptors to adenylate cyclase: Requirement for Na+ and GTP.Proc. Natl. Acad. Sci. USA 765626–5630.Google Scholar
  3. Bowen, W. D., Gentleman, S., Herkenham, M., and Pert, C. B. (1981). Interconverting mu and delta forms of Type 1 opiate receptors in rat striatal patches.Proc. Natl. Acad. Sci. USA 784818–4822.Google Scholar
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72248–254.Google Scholar
  5. Cassel, D., Eckstein, F., Lowe, M., and Selinger, Z. (1979). Determination of the turn-off reaction for the hormone-activated adenylate cyclase.J. Biol. Chem. 2549835–9838.Google Scholar
  6. Chang, K.- J., Hazum, E., Killian, A., and Cuatrecasas, P. (1981). Interactions of ligands with morphine and enkephalin receptors are differentially affected by guanine nucleotide.Mol. Pharmacol. 201–7.Google Scholar
  7. Collier, H. O. J., and Roy, A. C. (1974). Morphine-like drugs inhibit the stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenate.Nature 24824–27.Google Scholar
  8. Cooper, D. M. F., Schlegel, W., Lin, M. C., and Rodbell, M. (1979). The fat cell adenylate cyclase system: Characterization and manipulation of its bimodal regulation by GTP.J. Biol. Chem. 2548927–8931.Google Scholar
  9. Cooper, D. M. F., Londos, C., Gill, D. L., and Rodbell, M. (1982). Opiate receptor-mediated inhibition of adenylate cyclase in rat striatal plasma membranes.J. Neurochem. 381164–1167.Google Scholar
  10. Creese, I., Usdin, T., and Snyder, S. H. (1979). Guanine nucleotides distinguish between two dopamine receptors.Nature 278577–578.Google Scholar
  11. Dunlap, C. E., Leslie, F. M., Rado, M., and Cox, B. M. (1979). Ascorbate destruction of opiate stereospecific binding in guinea pig brain homogenate.Mol. Pharmacol. 16105–119.Google Scholar
  12. Gentleman, S., Parenti, M., Commissiong, J. W., and Neff, N. H. (1981). Dopamine-activated adenylate cyclase of spinal cord: Supersensitivity following transection of the cord.Brain Res. 210271–275.Google Scholar
  13. Gilman, A. J. (1970). A protein binding assay for adenosine 3′:5′-cyclic monophosphate.Proc. Natl. Acad. Sci. USA 67305–312.Google Scholar
  14. Kayaalp, S. O., Rubenstein, J. S., and Neff, N. H. (1981). Inhibition of D-1 and D-2 binding sites in neuronal tissue by ascorbate.Neuropharmacology 20409–410.Google Scholar
  15. Kimura, N., and Nagata, N. (1977). The requirement of guanine nucleotides for glucagon stimulation of adenylate cyclase in rat liver plasma membranes.J. Biol. Chem. 2523829–3835.Google Scholar
  16. Koski, G., and Klee, W. A. (1981). Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis.Proc. Natl. Acad. Sci. USA 784185–4189.Google Scholar
  17. Koski, G., Simonds, W. F., and Klee, W. A. (1981). Guanine nucleotides inhibit binding of agonists and antagonists to soluble opiate receptors.J. Biol. Chem. 2561536–1538.Google Scholar
  18. Lal, H. (1975). Minireview: Narcotic dependence, narcotic action and dopamine receptors.Life Sci. 17483–396.Google Scholar
  19. Law, P. Y., Wu, J., Koehler, J. E., and Loh, H. H. (1981). Demonstration and characterization of opiate inhibition of the striatal adenylate cyclase.J. Neurochem. 361834–1846.Google Scholar
  20. Nemeroff, C. B. (1980). Neurotensin: Perchance an endogenous neuroleptic.Biol. Psychiat. 15283–302.Google Scholar
  21. Nishikori, K., Noshiro, O., Sano, K., and Maeno, H. (1980). Characterization, solubilization and separation of two distinct dopamine receptors in canine caudate nucleus.J. Biol. Chem. 25510909–10915.Google Scholar
  22. Parenti, M., Gentleman, S., Olianas, and Neff, N. H. (1981). The dopamine receptor-adenylate cyclase complex: Evidence for post recognition site involvement for the development of supersensitivity.Neurochem. Res. 7115–124.Google Scholar
  23. Rodbell, M. (1980). The role of hormone receptors and GTP-regulatory proteins in membrane transduction.Nature 28417–22.Google Scholar
  24. Salomon, Y., Londos, C., and Rodbell, M. (1974). A highly sensitive adenylate cyclase assay.Anal. Biochem. 58541–548.Google Scholar
  25. Sharma, S. K., Nirenberg, M., and Klee, W. A. (1975). Morphine receptors as regulators of adenylate cyclase activity.Proc. Natl. Acad. Sci. USA 72590–594.Google Scholar
  26. U'Prichard, D. C., and Snyder, S. H. (1980). Interactions of divalent cations and guanine nucleotides at alpha2-noradrenergic receptor binding sites in bovine brain membranes.J. Neurochem. 34385–394.Google Scholar
  27. Walczak, S. A., Wilkening, D., and Makman, M. H. (1979). Interaction of morphine, etorphine and enkephalins with dopamine-stimulated adenylate cyclase of monkey amygdala.Brain Res. 160105–116.Google Scholar
  28. Watanabe, A. M., McConnaughey, M. M., Strawbridge, R. A., Fleming, J. W., Jones, L. R., and Besch, M. R., Jr. (1978). Muscarinic cholinergic receptor modulation of beta-adrenergic receptor affinity for catecholamines.J. Biol. Chem. 2534833–4836.Google Scholar
  29. Williams, L. T., and Lefkowitz, R. J. (1977). Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the beta-adrenergic receptor.J. Biol. Chem. 2527207–7213.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • S. Gentleman
    • 1
  • M. Parenti
    • 2
  • N. H. Neff
    • 3
  • C. B. Pert
    • 4
  1. 1.Laboratory of Vision ResearchNational Eye InstituteBethesdaUSA
  2. 2.University of MilanoMilanoItaly
  3. 3.Laboratory of Preclinical PharmacologyNational Institute of Mental HealthWashington, D.C.USA
  4. 4.Section on Brain BiochemistryNeuroscience Branch, National Institute of Mental HealthBethesdaUSA

Personalised recommendations