Cellular and Molecular Neurobiology

, Volume 12, Issue 4, pp 285–295 | Cite as

Voltage-clamp study of calcium currents during differentiation in the NCB-20 neuronal cell line

  • Jean-Marc Mienville


  1. 1.

    Calcium currents (ICa) were studied in voltage-clamped NCB-20 cells. In undifferentiated cells, voltage steps from hyperpolarized potentials (-80/-100 mV) essentially revealed transientICa showing characteristics classically described for “T-type” channels. In about 50% of the cells, there was a residual current at the end of the step; noICa was elicited from a holding potential of-50 mV.

  2. 2.

    In contrast, 100% of the cells differentiated with dibutyryl cyclic AMP (cAMP) displayed a residual current in addition to the transient one, and depolarizing steps from a holding potential of -50 mV induced a sustained current. In these cells, Bay K 8644 elicited both a negative shift in voltage dependence and a moderate increase of the sustained component.

  3. 3.

    Although these changes in Ca2+ channel physiology result from chemically induced differentiation, they might not be directly related to the concomitant morphologic differentiation.

  4. 4.

    In undifferentiated NCB-20 cells, T-type Ca2+ currents can be elicited in relative isolation.


Key words

NCB-20 calcium currents Bay K 8644 patch clamp cellular differentiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, N., Kostyuk, P. G., and Osipchuk, Y. V. (1989). Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones.J. Physiol. 412181–195.Google Scholar
  2. Audesirk, G., Audesirk, T., Ferguson, C., Lomme, M., Shugarts, D., Rosack, J., Caracciolo, P., Gisi, T., and Nichols, P. (1990). L-type calcium channels may regulate neurite initiation in cultured chick embryo brain neurons and N1E-115 neuroblastoma cells.Dev. Brain Res. 55109–120.Google Scholar
  3. Bodewei, R., Hering, S., Schubert, B., and Wollenberger, A. (1985). Sodium and calcium currents in neuroblastoma × glioma hybrid cells before and after morphological differentiation by dibutyryl cyclic AMP.Gen. Physiol. Biophys. 4113–127.Google Scholar
  4. Boland, L. M., and Dingledine, R. (1990). Multiple components of both transient and sustained barium currents in a rat dorsal root ganglion cell line.J. Physiol. 420223–245.Google Scholar
  5. Bolsover, S. R. (1986). Two components of voltage-dependent calcium influx in mouse neuroblastoma cells.J. Gen. Physiol. 88149–165.Google Scholar
  6. Bossu, J. L., Feltz, A., and Thomann, J. M. (1985). Depolarization elicits two distinct calcium currents in vertebrate sensory neurones.Pflugers Arch. 403360–368.Google Scholar
  7. Bossu, J. L., Feltz, A., Rodeau, J. L., and Tanzi, F. (1989). Voltage-dependent calcium currents in freshly dissociated capillary endothelial cells.FEBS Lett. 255377–380.Google Scholar
  8. Brown, D. A., Docherty, R. J., and McFadzean, I. (1989). Calcium channels in vertebrate neurons. Experiments on a neuroblastoma hybrid model.Ann. N.Y. Acad. Sci. 560358–372.Google Scholar
  9. Carbone, E., Sher, E., and Clementi, F. (1990). Ca currents in human neuroblastoma IMR32 cells: Kinetics, permeability and pharmacology.Pflugers Arch. 416170–179.Google Scholar
  10. Docherty, R. J. (1988). Gadolinium selectively blocks a component of calcium current in rodent neuroblastoma × glioma hybrid (NG108-15) cells.J. Physiol. 39833–47.Google Scholar
  11. Fishman, M. C., and Spector, I. (1981). Potassium current suppression by quinidine reveals additional calcium currents in neuroblastoma cells.Proc. Natl. Acad. Sci. USA 785245–5249.Google Scholar
  12. Fox, A. P., Nowycky, M. C., and Tsien, R. W. (1987). Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones.J. Physiol. 394149–172.Google Scholar
  13. Freedman, S. B., Dawson, G., Villereal, M. L., and Miller, R. J. (1984). Identification and characterization of voltage-sensitive calcium channels in neuronal clonal cell lines.J. Neurosci. 41453–1467.Google Scholar
  14. Friel, D. D., and Tsein, R. W. (1989). Voltaged-gated calcium channels: Direct observation of the anomalous mole fraction effect at the single-channel level.Proc. Natl. Acad. Sci. USA 865207–5211.Google Scholar
  15. Garber, S. S., Hoshi, T., and Aldrich, R. W. (1989). Regulation of ionic currents in phenochromocytoma cells by nerve growth factor and dexamethasone.J. Neurosci. 93976–3987.Google Scholar
  16. Hamill, O., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981). Improved path-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pflugers Arch. 39185–100.Google Scholar
  17. Hering, S., Bodewei, R., Schubert, B., Rohde, K., and Wollenberger, S. (1985). A kinetic analysis of the inward calcium current in 108CC15 neuroblastoma × glioma hybrid cells.Gen.Physiol. Biophys. 4129–141.Google Scholar
  18. Janigro, D., Maccaferri, G., Meldolesi, J. (1989). Calcium channels in undifferentiated PC12 rat pheochromocytoma cells.FEBS Lett. 255398–400.Google Scholar
  19. Jones, S. W., and Marks, T. N. (1989). Calcium currents in bullfrog sympathetic neurons.J. Gen. Physiol. 94151–167.Google Scholar
  20. Kongsamut, S., and Miller, R. J. (1986). Nerve growth factor modulates the drug sensitivity of neurotransmitter release from PC-12 cells.Proc. Natl. Acad. Sci. USA 832243–2247.Google Scholar
  21. Kunze, D. L., Hamilton, S. L., Hawkes, M. J., and Brown, A. M. (1987). Dihydrophyrdine binding and calcium channel function in clonal rat adrenal medullary tumor cells.Mol. Pharmacol. 31401–409.Google Scholar
  22. Moolenaar, W. H., and Spector, I. (1979). The calcium current and the activation of a slow potassium conductance in voltage-clamped mouse neuroblastoma cells.J. Physiol. 292307–323.Google Scholar
  23. Narahashi, T., Tsunoo, A., and Yoshii, M. (1987). Characterization of two types of calcium channels in mouse neuroblastoma cells.J. Physiol. 383231–249.Google Scholar
  24. Nirenberg, M., Wilson, S., Higashida, H., Rotter, A., Kreuger, K., Busis, N., Ray, R., Kenimer, J. G., and Adler, M. (1983). Modulation of synapse formation by cyclic adenosine monophosphate.Science 222794–799.Google Scholar
  25. Noronha-Blob, L., Lowe, V. C., Kinnier, W. J., and U'Prichard, D. C. (1986). NI-coupled receptors in cultured neural hybrid cells: Cell specificity for dibutyryl cyclic AMP-induced down-regulation but not morphological differentiation.Mol. Pharmacol. 30526–536.Google Scholar
  26. Noronha-Blob, L., Richard, C., and U'Prichard, D. C. (1988). Voltage-sensitive calcium channels in differentiated neuroblastoma × glioma hybrid (NG108-15) cells: characterization by quin 2 fluorescence.J. Neurchem. 501381–1390.Google Scholar
  27. Peters, J. A., and Lambert, J. J. (1989). Electrophysiology of 5-HT3 receptors in neuronal cell lines.Trends Pharmacol. Sci. 10172–175.Google Scholar
  28. Plummer, M. R., Logothetis, D. E., and Hess, P. (1989). Elementary properties and pharmacological sensitivites of calcium channels in mammalian peripheral neurons.Neuron 21453–1463.Google Scholar
  29. Quandt, F. N., and Narahashi, T. (1984). Isolation and kinetic analysis of inward currents in neuroblastoma cells.Neuroscience 13249–262.Google Scholar
  30. Silver, R. A., Lamb, A. G., and Bolsover, S. R. (1990). Calcium hotspots caused by L-channel clustering promote morphological changes in neuronal growth cones.Nature (London)343751–754.Google Scholar
  31. Streit, J., and Lux, H. D. (1987). Voltage dependent calcium currents in PC12 growth cones during NGF-induced cell growth.Pflugers Arch. 408634–641.Google Scholar
  32. Streit, J., and Lux, H. D. (1990). Calcium current inactivation during nerve-growth-factor-induced differentiation of PC12 cells.Pflugers Arch. 416368–374.Google Scholar
  33. Tang, C.-M., Presser, F., and Morad, M. (1988). Amiloride selectively blocks the low threshold (T) calcium channel.Science 240213–215.Google Scholar
  34. Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R., and Fox, A. P. (1988). Multiple types of neuronal calcium channels and their selective modulation.Trends Neurosci. 11431–438.Google Scholar
  35. Tang, C.-M., Presser, F., and Morad, M. (1988). Amiloride selectively blocks the low threshold (T) calcium channel.Science 240213–215.Google Scholar
  36. Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R., and Fox, A. P. (1988). Multiple types of neuronal calcium channels and their selective modulation.Trends Neurosci. 11431–438.Google Scholar
  37. Tsunoo, A., Yoshii, M., and Narahashi, T. (1986). Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108-15 cells.Proc. Natl. Acad. Sci. USA 839832–9836.Google Scholar
  38. Twombly, D. A., Yoshii, M., and Narahashi, T. (1988). Mechanisms of calcium channel block by phenytoin.J. Pharmacol. Exp. Ther. 246189–195.Google Scholar
  39. Wang, R., Karpinski, E., Wu, L., and Pang, P. K. T. (1990). Flunarizine selectively blocks transient calcium channel currents in N1E-115 cells.J. Pharmacol. Exp. Ther. 2541006–1011.Google Scholar
  40. Yaari, Y., Hamon, B., and Lux, H. D. (1987). Development of two types of calcium channels in cultured mammalian hippocampal neurons.Science 235680–682.Google Scholar
  41. Yoshii, M., Tsunoo, A., and Narahashi, T. (1988). Gating and permeation properties of two types of calcium channels in neuroblastoma cells.Biophys. J. 54885–895.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Jean-Marc Mienville
    • 1
  1. 1.SANOFI RechercheRue du Prof. J. BlayacMontpellier Cedex 04France

Personalised recommendations