Advertisement

Cellular and Molecular Neurobiology

, Volume 11, Issue 5, pp 437–453 | Cite as

D2 dopamine receptors in the human retina: Cloning of cDNA and localization of mRNA

  • Allen Dearry
  • Pierre Falardeau
  • Carol Shores
  • Marc G. Caron
Article

Summary

  1. 1.

    We have obtained a cDNA clone encoding a human retinal D2 dopamine receptor.

     
  2. 2.

    The longest open reading frame (1242 bp) of this clone encodes a protein of 414 amino acids having a predicted molecular weight of 47,000 and a transmembrane topology similar to that of other G protein-coupled receptors.

     
  3. 3.

    Transient transfection of COS-7 cells with an expression vector containing the clone resulted in expression of a protein possessing a pharmacological profile similar to that of the D2 dopamine receptor found in striatum and retina.

     
  4. 4.

    Northern blot analysis indicated that, in rat brain and retina, the mRNA for this receptor was 2.9 kb in size.

     
  5. 5.

    In situ hybridization was performed to examine the distribution of the mRNA for this receptor in human retina. Specific hybridization was detected in both the inner and the outer nuclear layers.

     
  6. 6.

    These findings are consistent with prior physiological and autoradiographic studies describing the localization of D2 dopamine receptors in vertebrate retinas. Our observations suggest that photoreceptors as well as cells in the inner nuclear layer of human retinas may express the mRNA for this D2 dopamine receptor.

     

Key words

dopamine D2 receptor retina cloning in situ hybridization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, P., Gingrich, J., Bates, M., Dearry, A., Falardeau, P., Senogles, S., and Caron, M. (1990). Dopamine receptor subtypes: Beyond the D1/D2 classification.Trends Pharmacol. Sci. 11231–236.Google Scholar
  2. Angerer, L., Cox, K., and Angerer, R. (1987). Demonstration of tissue-specific gene expression by in situ hybridization.Meth. Enzymol. 152649–661.Google Scholar
  3. Benovic, J., Bouvier, M., Caron, M., and Lefkowitz, R. (1988). Regulation of adenylyl cyclasecoupledβ-adrenergic receptors.Annu. Rev. Cell Biol. 4405–428.Google Scholar
  4. Besharse, J., Iuvone, M., and Pierce, M. (1988). Regulation of rhythmic photoreceptor metabolism: A role for post-receptoral neurons.Prog. Retin. Res. 721–61.Google Scholar
  5. Bondy, S., Ali, S., Hong, J., Wilson, W., Fletcher, T., and Chader, G. (1983). Neurotransmitter-related features of the retinal pigment epithelium.Neurochem. Int. 5285–290.Google Scholar
  6. Brann, M., and Young, S. (1986). Dopamine receptors are located on rods in bovine retina.Neurosci. Lett. 69221–226.Google Scholar
  7. Bruinink, A., Dawis, S., Niemeyer, G., and Lichtensteiger, W. (1986). Catecholaminergic binding sites in cat retina, pigment epithelium, and choroid.Exp. Eye Res. 43147–151.Google Scholar
  8. Bunzow, J., Van Tol, H., Grandy, D., Albert, P., Salon, J., Christie, M., Machida, C., Neve, K., and Civelli, O. (1988). Cloning and expression of a rat D2 dopamine receptor cDNA.Nature 336783–787.Google Scholar
  9. Cohen, A., and Blazyniski, C. (1990). Dopamine and its agonists reduce a light-sensitive pool of cyclic AMP in mouse photoreceptors.Vis. Neurosci. 443–52.Google Scholar
  10. Cullen, B. (1987). Use of eukaryotic expression technology in the functional analysis of cloned genes.Meth. Enzymol. 152684–704.Google Scholar
  11. Dal Toso, R., Sommer, B., Evert, M., Herb, A., Pritchett, D., Bach, A., Shivers, B., and Seeburg, P. (1989). The dopamine D2 receptor: Two molecular forms generated by alternative splicing.EMBO J. 84025–4034.Google Scholar
  12. Dawis, S., and Niemeyer, G. (1986). Dopamine influences the light peak of the perfused mammalian eye.Invest. Ophthalmol. Vis. Sci. 27330–335.Google Scholar
  13. Dearry, A., and Burnside, B. (1985). Dopamine inhibits forskolin- and 3-isobutyl-1-methylxanthineinduced dark-adaptive retinomotor movements in isolated telost retinas.J. Neurochem. 441753–1763.Google Scholar
  14. Dearry, A., and Burnside, B. (1986). Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas. I. Induction of cone contraction is mediated by D2 receptors.J. Neurochem. 461006–1021.Google Scholar
  15. Dearry, A., and Burnside, B. (1988). Dopamine induces light-adaptive retinomotor movements in teleost photoreceptors and retinal pigment epithelium. InDopaminergic Mechanisms in Vision (I. Bodis-Wollner Ed), Alan R. Liss, New York, pp. 109–135.Google Scholar
  16. Dearry, A., and Burnside, B. (1989). Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium.J. Neurochem. 53870–878.Google Scholar
  17. Dearry, A., Edelman, J., Miller, S., and Burnside, B. (1990a). Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors.J. Neurochem. 541367–1378.Google Scholar
  18. Dearry, A., Gingrich, J., Falardeau, P., Fremeau, R., Bates, M., and Caron, M. (1990b). Molecular cloning and expression of the gene for a human D1 dopamine receptor.Nature 34772–76.Google Scholar
  19. Delean, A., Hancock, A., and Lefkowitz, R. (1982). Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes.Mol. Pharmacol. 215–16.Google Scholar
  20. Dickman, M., and Tran, V. (1990). D1 and D2 dopamine receptors are differentially localized in the rat retina.Invest. Ophthalmol. Vis. Sci. Suppl. 31331.Google Scholar
  21. Dowling, J. (1986). Dopamine: A retinal neuromodulator?Trends Neurosci. 9236–240.Google Scholar
  22. Dubocovich, M. (1984). Modulation of [3H]dopamine release from rabbit retina.Fed. Proc. 432714–2718.Google Scholar
  23. Eder, D., Gilbreath, M., and Williams, T. (1990). Reduction of late PIII responses by dopamine in isolated rat retina.Invest. Ophthalmol. Vis. Sci. Suppl. 31388.Google Scholar
  24. Ehinger, B. (1983). Functional role of dopamine in the retina.Prog. Retinal Res. 2213–232.Google Scholar
  25. Frederick, J., Rayborn, M., Laties, A., Lam, D., and Hollyfield, J. (1982). Dopaminergic neurons in the human retina.J. Comp. Neurol. 21065–79.Google Scholar
  26. Fremeau, R., Lundblad, J., Pritchett, D., Wilcox, J., and Roberts, J. (1986). Regulation of pro-opiomelanocortin gene transcription in individual cell nuclei.Science 2341265–1269.Google Scholar
  27. Giros, B., Sokoloff, P., Martres, M., Riou, J., Emorine, L., and Schwartz, J. (1989). Alternative splicing directs the expression of two D2 dopamine receptor isoforms.Nature 342923–926.Google Scholar
  28. Grandy, D., Marchionni, M., Makam, H., Stofko, R., Alfano, M., Frothingham, L., Fischer, J., Burke-Howie, K., Bunzow, J., Server, A., and Civelli, O. (1989). Cloning of the cDNA and gene for a human D2 dopamine receptor.Proc. Natl. Acad. Sci. USA 869762–9766.Google Scholar
  29. Grant, G., and Werblin, F. (1990). Dopaminergic modulation of a sustained, voltage-gated calcium current in vertebrate rods of the tiger salamander.Invest. Ophthalmol. Vis. Sci. Suppl. 31176.Google Scholar
  30. Gredal, O., Parkinson, D., and Nielsen, M. (1987). Binding of [3H]SCH23390 to dopamine D1 receptors in rat retina in vitro.Eur. J. Pharmacol. 137241–245.Google Scholar
  31. Grigoriadis, D., Niznik, H., Jarvie, K., and Seeman, P. (1988). Glycoprotein nature of D2 dopamine receptors.FEBS Lett. 227220–224.Google Scholar
  32. Hensler, J., Cotterell, D., and Dubocovich, M. (1987). Pharmacological and biochemical characterization of the D1 dopamine receptor mediating acetylcholine release in rabbit retinas.J. Pharmacol. Exp. Ther. 243857–867.Google Scholar
  33. Huff, R., and Molinoff, P. (1982). Quantitative determination of dopamine receptor subtypes not linked to activation of adenylate cyclase in rat striatum.Proc. Natl. Acad. Sci. USA 797561–7565.Google Scholar
  34. Iuvone, M., Boatright, J., and Bloom, M. (1987). Dopamine mediates the light-evoked suppression of serotonin N-acetyltransferase activity in retina.Brain Res. 418314–324.Google Scholar
  35. Jensen, R., and Daw, N. (1986). Effects of dopamine and its agonists and antagonsits on the receptive field properties of ganglion cells in the rabbit retina.Neuroscience 17837–855.Google Scholar
  36. Kebabian, J., and Calne, D. (1979). Multiple receptors for dopamine.Nature 27793–96.Google Scholar
  37. Kimelman, D., and Kirschner, M. (1989). An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes.Cell 59687–696.Google Scholar
  38. Land, H., Grez, H., Hauser, H., Lindenmaier, W., and Schutz, G. (1981). 5′-Terminal sequences of eucaryotic mRNA can be cloned with high efficiency.Nucleic Acids Res. 92251–2266.Google Scholar
  39. Lasater, E., and Dowling, J. (1985). Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells.Proc. Natl. Acad. Sci. USA 823025–3029.Google Scholar
  40. Lefkowitz, R., and Caron, M. (1988). The adrenergic receptors: Models for the study of receptors coupled to guanine nucleotide regulatory proteins.J. Biol. Chem. 2634993–4996.Google Scholar
  41. Lin, C., McGonigle, P., and Molinoff, P. (1987). Characterization of D2 dopamine receptors in a tumor of the rat anterior pituitary gland.J. Pharmacol. Exp. Ther. 242950–956.Google Scholar
  42. McGonigle, P., Wax, M., and Molinoff, P. (1988). Characterization of binding sites for [3H]spiroperidol in human retina.Invest. Ophthalmol. Vis. Sci. 29687–694.Google Scholar
  43. Monsma, F., McVittie, L., Gerfen, C., Mahan, L., and Sibley, D. (1989). Multiple D2 dopamine receptors produced by alternative RNA splicing.Nature 342926–929.Google Scholar
  44. O'Dowd, B., Hnatowich, M., Caron, M., Lefkowitz, R., and Bouvier, M. (1989). Palmitoylation of the humanβ 2-adrenergic receptor.J. Biol. Chem. 2647564–7569.Google Scholar
  45. Ovchinnikov, Y., Abdulaev, N., and Bogachuk, A. (1988). Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitoylated.FEBS Lett. 2301–5.Google Scholar
  46. Piccolino, M., Demontis, G., Witkovsky, P., Strettoi, E., Cappagli, G., Porceddu, M., DeMontis, M., Pepitoni, S., Biggio, G., Meller, E., and Bohmaker, K. (1989). Involvement of D1 and D2 dopamine receptors in the control of horizontal cell electrical coupling in the turtle retina.Eur. J. Neurosci. 1247–257.Google Scholar
  47. Pierce, M., and Besharse, J. (1985). Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length.J. Gen. Physiol. 86671–689.Google Scholar
  48. Qu, Z., Fertel, R., Neff, N., and Hadjiconstantinou, M. (1989). Pharmacological characterization of rat retinal dopamine receptors.J. Pharmacol. Exp. Ther. 248621–625.Google Scholar
  49. Regan, J., Kobilka, T., Yang-Feng, T., Caron, M., Lefkowitz, R., and Kobilka, B. (1988). Cloning and expression of a human kidney cDNA for anα 2-adrenergic receptor subtype.Proc. Natl. Acad. Sci. USA 856301–6305.Google Scholar
  50. Reme, C., Wirz-Justice, A., Rhyner, A., and Hofman, S. (1986). Circadian rhythm in the light response of rat retinal disk-shedding and autophagy.Brain Res. 369356–360.Google Scholar
  51. Robbins, J., Wakakuwa, K., and Ikeda, H. (1988). Noradrenaline action on cat retinal ganglion cells is mediated by dopamine (D2) receptors.Brain Res. 43852–60.Google Scholar
  52. Rossetti, Z., Silvia, C., Krajac, D., Neff, N., and Hadjiconstantinou, M. (1990). Aromatic L-amino acid decarboxylase is modulated by D1 dopamine receptors in rat retina.J. Neurochem. 54787–791.Google Scholar
  53. Sambrook, J., Fritsch, E., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  54. Sato, T., Yoneyama, T., Kim, H., and Suzuki, T. (1987). Effect of dopamine and haloperidol on the c-wave and light peak of light-induced retinal responses in chick eye.Doc. Ophthalmol. 6587–95.Google Scholar
  55. Seeman, P. (1981). Brain dopamine receptors.Pharmacol. Rev. 32229–313.Google Scholar
  56. Stormann, T., Gdula, D., Weiner, D., and Brann, M. (1990). Molecular cloning and expression of a dopamine D2 receptor from human retina.Mol. Pharmacol. 371–6.Google Scholar
  57. Teranishi, T., Negishi, K., and Kato, S. (1984). Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina.J. Neurosci. 41271–1280.Google Scholar
  58. Todd, R., Khurana, T., Sajovic, P., Stone, K., and O'Malley, K. (1989). Cloning of ligand-specific cell lines via gene transfer: Identification of a D2 dopamine receptor subtype.Proc. Natl. Acad. Sci. USA 8610134–10138.Google Scholar
  59. Vaney, D. (1985). The morphology and topographic distribution of AII amacrine cells in the cat retina.Proc. Roy. Soc. Lond. B 224475–488.Google Scholar
  60. Witkovsky, P., Stone, S., and Tranchina, D. (1989). Photoreceptor to horizontal cell synaptic transfer in the Xenopus retina: Modulation by dopamine ligands and a circuit model for interactions of rod and cone inputs.J. Neurophysiol. 62864–881.Google Scholar
  61. Zarbin, M., Wamsley, J., Palacios, J., and Kuhar, M. (1986). Autoradiographic localization of high affinity GABA, benzodiazepine, dopaminergic, adrenergic, and muscarinic cholinergic receptors in the rat, monkey, and human retina.Brain Res. 37475–92.Google Scholar
  62. Zawilska, J., and Iuvone, M. (1989). Catecholamine receptors regulating serotonin N-acetyltransferase activity and melatonin content of chicken retina and pineal gland: D2-dopamine receptors in retina andα 2-adrenergic receptors in pineal gland.J. Pharmacol. Exp. Ther. 25086–92.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Allen Dearry
    • 1
    • 2
  • Pierre Falardeau
    • 1
  • Carol Shores
    • 5
  • Marc G. Caron
    • 1
    • 3
    • 4
  1. 1.Department of Cell BiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of OphthalmologyDuke University Medical CenterDurhamUSA
  3. 3.Department of MedicineDuke University Medical CenterDurhamUSA
  4. 4.Howard Hughes Medical Institute LaboratoriesDuke University Medical CenterDurhamUSA
  5. 5.Department of ChemotherapyGlaxo, Research Triangle ParkUSA

Personalised recommendations