Advertisement

Cellular and Molecular Neurobiology

, Volume 3, Issue 4, pp 311–328 | Cite as

Ionic and spectral mechanisms of the off response to light in hyperpolarizing photoreceptors of the clam,Lima scabra

  • M. C. Cornwall
  • Anthony L. F. Gorman
Article

Summary

  1. 1.

    Intracellular recordings were made from distal photoreceptor cells of the file clamLima scabra in order to examine the ionic and spectral mechanisms which underly the response to light decrement. These receptors are primary sensory neurons that generate nerve impulses in the optic nerve upon light termination without benefit of synaptic interconnections between photoreceptor cells. Microelectrode measurements were made on these cells. Membrane conductance changes were assessed by measuring membrane voltage changes elicited under different conditions while passing constant-current pulses through the microelectrode from an active bridge amplifier.

     
  2. 2.

    Responses of membrane potential in light and darkness in different concentrations of external potassium ions were fitted to a simplified form of the constant field equation. This analysis allowed an estimation of internal potassium activity (281 mM) as well as changes inPNa/PK in darkness and light.PNa/PK changed from 0.09 in darkness to 0.03 at the peak of the light response.

     
  3. 3.

    A persistent decrease in membrane conductance at the termination of light is associated with a depolarization that overshoots the dark resting membrane potential. This transient depolarization is dependent on the intensity and duration of the preceding period of light.

     
  4. 4.

    The amplitude of the dark-dependent depolarization is related to the absorbance of light during the preceding period of light by a long wavelength intermediate of rhodopsin bleaching (metarhodopsin).

     
  5. 5.

    The frequency of discharge of action potentials with rapid kinetics which occurs following light is proportional to the amplitude of the after depolarizing response. The delay to onset of the discharge is inversely proportional to the amplitude of the after depolarizing response.

     
  6. 6.

    The sensitivity (response/photon) of distal cells can be modified by background light which passes through a screening pigment found in cells that surround the eye.

     
  7. 7.

    These data, taken together, provide an explanation for the persistent discharge of action potentials which occurs on termination of light in these cells as well as the visual cells of other gastropod mollusks.

     

Key words

hyperpolarizing photoreceptors rhodopsin-metarhodopsin retinal processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman, W. J., Jr., and Palti, Y. (1969). The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid,Loligo peali.J. Gen. Physiol. 54589–606.Google Scholar
  2. Almagor, E., Hillman, P., and Minke, B. (1979). Upper limit on translational diffusion of visual pigment in intact unfixed barnacle photoreceptors.Biophys. Struct. Mech. 5243–248.Google Scholar
  3. Arvanitaki, A., and Chalazonitis, N. (1949b). Inhibition ou excitation des potentiels neuroniques a la photoactivation distincte de deux chromoproteides (carotenoide et chloriphyllien).Arch. Sci. Physiol. 345–83.Google Scholar
  4. Barber, V. C. and Land, M. F. (1967). Eye of the cockle,Cardium edule: Anatomical and physiological observations.Experientia 23677–678.Google Scholar
  5. Barber, V. C., Evans, E. M., and Land, M. F. (1967). The fine structure of the eye of the molluscPecten maximus.Z. Zellforsch. Mikrosk. Anat. 76295–312.Google Scholar
  6. Bell, A. L., and Mpitsos, G. J. (1968). Morphology of the eye of the flame fringe clam,Lima scabra.Biol. Bull. 135414–415.Google Scholar
  7. Benolken, R. M. (1976). Photopigments in the lateral eye ofLimulus.J. Comp. Physiol. 107339–347.Google Scholar
  8. Brown, A. M., and Brown, H. M. (1973). Light responses of a giantAplysia neuron.J. Gen. Physiol. 62239–254.Google Scholar
  9. Cornwall, M. C., and Gorman, A. L. F. (1979). Contribution of calcium and potassium permeability changes to the off response of scallop hyperpolarizing photoreceptors.J. Physiol. (Lond.) 291207–232.Google Scholar
  10. Cornwall, M. C., and Gorman, A. L. F. (1983a). The cation selectivity and voltage dependence of the light activated potassium conductance in scallop distal photoreceptors.J. Physiol. (Lond.) 340287–305.Google Scholar
  11. Cornwall, M. C., and Gorman, A. L. F. (1983b). Colour dependence of the early receptor potential and late receptor potential of scallop distal photoreceptor.J. Physiol. (Lond.) 340307–334.Google Scholar
  12. Dakin, W. J. (1910). The eye of Pecten.Quart. J. Microsc. Sci. 5549–112.Google Scholar
  13. Goldman, D. E. (1943). Potential, impedance, and rectification in membranes.J. Gen. Physiol. 2737–60.Google Scholar
  14. Gorman, A. L. F., and Marmor, M. F. (1970). Contributions of the sodium pump and ionic gradients to the membrane potential of a molluscan neurone.J. Physiol. (Lond.) 210897–917.Google Scholar
  15. Gorman, A. L. F., and McReynolds, J. S. (1978). Ionic effects on the membrane potential of hyperpolarizing photoreceptors in scallop retina.J. Physiol. (Lond.) 275345–355.Google Scholar
  16. Guillium, G. F. (1963). The mechanism of the shadow reflex in Cirripedia. I. Electrical activity in the supraesophageal ganglion and ocellar nerve.Biol. Bull. Mar. Biol. Lab. Woods Hole 125470–485.Google Scholar
  17. Guttman, R., and Hachmeister, L. (1972). Anode break excitation in space clamped squid axons.Biophys. J. 12552.Google Scholar
  18. Hamdorf, K. (1979). The physiology of invertebrate visual pigments. InHandbook of Sensory Physiology.Vol. VII/6A (Autrum, H., Ed.), Springer, Berlin, Heidelberg, New York, pp. 145–224.Google Scholar
  19. Hardie, R. C., Franceschini, N., and McIntire, P. D. (1979). Electrophysiological analysis of the fly retina. II. Spectral and polarization sensitivity in R7 and R8.J. Comp. Physiol. 13323–39.Google Scholar
  20. Hartline, H. K. (1938). The discharge of impulses in the optic nerve of Pecten in response to illumination of the eye.J. Cell. Comp. Physiol. 11465–478.Google Scholar
  21. Hillman, P., Hochstein, S., and Minke, B. (1983). Transduction in invertebrate photoreceptors: Role of pigment bistability.Physiol. Rev. 65668–772.Google Scholar
  22. Hodgkin, A. L., and Katz, B. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (Lond.) 10837–77.Google Scholar
  23. Kennedy, D. (1960). Neural photoreception in a lamellibranch mollusc.J. Gen. Physiol. 44277–299.Google Scholar
  24. Kirschfeld, K. (1979). The function of photostable pigments in fly photoreceptors.Biophys. Struct. Mech. 5117–128.Google Scholar
  25. Kirschfeld, K. (1982). Carotenoid pigments: their possible role in protecting against photooxidation in eyes and photoreceptor cells.Proc. Roy. Soc. Lond. Ser. B 21671–85.Google Scholar
  26. Kirschfeld, K., Franceschini, N., and Minke, B. (1979). Evidence for a sensitizing pigment in fly photoreceptors.Nature (Lond.). 269386–390.Google Scholar
  27. Land, M. F. (1969). Functional aspects of the optical and retinal organization of the mollusc eye.Symp. Zool. Soc. Lond. 2375–96.Google Scholar
  28. Leonard, R. J., and Lisman, J. E. (1981). Light modulates voltage-dependent potassium channels inLimulus ventral photoreceptors.Science 2121273–1275.Google Scholar
  29. McReynolds, J. S. (1976). Hyperpolarizing photoreceptors in invertebrates. InNeural Principles in Vision (Zettler, F., and Weiler, R., Eds.), Springer, Berlin, Heidelberg, New York, pp. 394–409.Google Scholar
  30. Minke, B., and Kirschfeld, K. (1979). The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin.J. Gen. Physiol. 73517–540.Google Scholar
  31. Moreton, R. B. (1968). An application of the constant-field theory to the behavior of giant neurones of the snail,Helix aspersa.J. Exp. Biol. 48611–623.Google Scholar
  32. Mpitsos, G. J. (1973). Physiology of vision in the molluskLima scabra.J. Neurophysiol. 36371–383.Google Scholar
  33. Naitoh, Y., and Eckert, R. (1973). Sensory mechanisms inParamecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential.J. Comp. Biol. 5953–65.Google Scholar
  34. Ruck, P. (1961). Electrophysiology of the insect dorsal ocellus.J. Gen. Physiol. 44605–657.Google Scholar
  35. Schoepfle, G., and Young, J. Z. (1936). The structure of the eye of Pecten.Biol. Bull. 71403.Google Scholar
  36. Stuart, A. E., and Oertel, D. (1981). Transformation of signals by interneurones in the barnacle's visual pathway.J. Physiol. (Lond.) 311127–146.Google Scholar
  37. Tabata, M., Tamura, T., and Niwa, H. (1975). Origin of the slow potential in the pineal organ of the rainbow trout.Vision Res. 15737–740.Google Scholar
  38. Tobias, J. (1952). Some observations on the structure of nerve in the clam,Mactra solidissima.J. Cell. Comp. Physiol. 39161.Google Scholar
  39. Wiederhold, M. I., MacNichol, E. F., Jr., and Bell, A. I. (1973). Photoreceptor spike responses in the hardshell clam,Mercenaria, mercenaria.J. Gen. Physiol. 6124–55.Google Scholar
  40. Wilska, A., and Hartline, H. K. (1941). The origin of “off responses” in the optic pathway.Am. J. Physiol. 133491–492.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • M. C. Cornwall
    • 1
  • Anthony L. F. Gorman
  1. 1.Department of PhysiologyBoston University School of MedicineBostonUSA

Personalised recommendations