Cellular and Molecular Neurobiology

, Volume 10, Issue 2, pp 207–216 | Cite as

Diurnal changes in actin mRNA levels and incorporation of35S-methionine into actin in the rat hypothalamus

  • Juan Iovanna
  • Nelson Dusetti
  • Ezequiel Calvo
  • Daniel P. Cardinali
Article

Summary

  1. 1.

    Thein vitro incorporation of35S-methionine into actin and total soluble proteins, as well as the levels of actin mRNA, were studied in the hypothalamus and frontal cerebral cortex of adult male rats killed at six different time intervals during a 24-hr cycle.

     
  2. 2.

    The specific activity of total soluble proteins after labeled methionine incubations did not vary as a function of time of day in any of the examined brain regions.

     
  3. 3.

    The incorporation of35S-methionine into a 43-kDa protein, corresponding to the electrophoretic mobility of actin, varied diurnally in the hypothalamus, exhibiting a maximum at 1200 hr. Such a diurnal variation was not found in frontal cerebral cortex.

     
  4. 4.

    Similar results were obtained when labeled methionine incorporation into actin was assessed in hypothalamus and cerebral cortex by an immunoprecipitation procedure.

     
  5. 5.

    An increase in actin hypothalamic mRNA levels, quantitated by dot-blot analysis, was found at 0800, 4 hr in advance to the maximum in35S-methionine incorporation to actin.

     
  6. 6.

    The levels of actin mRNA did not vary significantly as a function of time of day in the frontal cerebral cortex.

     

Key words

Circadian rhythms brain actin hypothalamus mRNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, M. L. N., and Young, B. D. (1985). Quantitative filter hybridisation. InNucleic Acid Hybridisation. A Practical Approach (B. D. Hamer and S. J. Higgins, Eds.), IRL Press, Oxford, pp. 73–111.Google Scholar
  2. Burry, W., Kniss, D. A., and Scribner, L. R. (1984). Mechanisms of synapse formation and maturation. InCurrent Topics in Research on Synapses, Vol. 1 (D. G. Jones, Ed.), Alan R. Liss, New York, pp. 1–51.Google Scholar
  3. Cáceres, A., Payne, M. R., Binder, L. I., and Steward, O. (1983). Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines.Proc. Natl. Acad. Sci. USA 801738–1742.Google Scholar
  4. Chevillard, C., Barden, N., and Saavedra, J. M. (1981). Twenty-four hour rhythm in monoamine oxidase activity in specific areas of the rat brain stem.Brain Res. 223205–209.Google Scholar
  5. Chirgwin, J., Przybyla, A., MacDonald, R., and Rutter, W. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonucleases.Biochemistry 195294–5295.Google Scholar
  6. Cohen, R. S., Chung, S. K., and Pfaff, D. W. (1985). Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloid gold as a probe.Cell. Mol. Neurobiol. 5271–284.Google Scholar
  7. Diaguji, M., Mikuni, M., Okada, F., and Yamashita, I. (1978). The diurnal variations in dopamine-β-hydroxylase activity in the hypothalamus and locus coeruleus of the rat.Brain Res.,155409–412.Google Scholar
  8. Goldman, J. E. (1983). Immunocytochemical studies of actin localization in the central nervous system.J. Neurosci. 31952–1962.Google Scholar
  9. Hirokawa, N., and Heuser, J. E. (1982). Internal and external differentiations of the presynaptic membrane at the neuromuscular junction.J. Neurocytol. 11487–510.Google Scholar
  10. Kan, J. P., Chouvet, G., Hery, F., Debilly, G., Mermet, A., Glowinski, J., and Pujol, J. F. (1977). Daily variations of various parameters of serotonin metabolism in the rat brain. I. Circadian variations of tryptophan-5-hydroxylase in the raphe nuclei and the striatum.Brain Res. 123125–136.Google Scholar
  11. Kelly, R. B. (1988). The cell biology of the nerve terminal.Neuron 1431–438.Google Scholar
  12. Kessler, S. W. (1975). Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: Parameters of the interaction of antibody-antigen complexes with protein A.J. Biol. Chem. 1151617–1624.Google Scholar
  13. Kler, A., and Rosen, A. (1985). Differences in the pattern of soluble proteins from rat brain regions.J. Neurochem. 441333–1339.Google Scholar
  14. Kordeli, E., Cartaud, J., Nghiem, H.-O., Pradel, L.-A., Dubreil, C., Paulin, D., and Changeaux, J. P. (1986). Evidence for a polarity in the distribution of proteins from the cytoskeleton in Torpedo marmorata electrocytes.J. Cell Biol. 102748–761.Google Scholar
  15. Laemmli, O. M. (1970). Cleavage of structural proteins during the assembly of the head bacteriophage T4.Nature 227680–685.Google Scholar
  16. Lajtha, A., and Dunlop, D. (1976). Protein metabolism in neuroendocrine tissue. InSubcellular Mechanisms in Reproductive Neuroendocrinology (F. Naftolin, J., Ryan, and J. Davies, Eds.), Elsevier, Amsterdam, pp 63–80.Google Scholar
  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193265–275.Google Scholar
  18. Moore, R. Y. (1983). Organization and function of a CNS oscillator: the suprachiasmatic nucleus.Fed. Proc. 422783–2789.Google Scholar
  19. Natali, J. P., McRae-Degueurce, A., Chouvet, G., and Pujol, J. F. (1980a). Genetic studies of daily variations of first-step enzymes of monoamine metabolism in the brain of inbred strains of mice and hybrids. I. Daily variations of tryptophan hydroxylase activity in the nuclei dorsalis, raphe centralis and in the striatum.Brain Res. 191191–203.Google Scholar
  20. Natali, J. P., McRae-Deguerce, A., Keane, P., Debilly, G., and Pujol, J. F. (1980b). Daily variations of tyrosine hydroxylase activity in the locus coeruleus.Brain Res. 191205–213.Google Scholar
  21. Nielsch, U., and Keen, P. (1988). Changes in tachykinin and actin gene expression in rat sensory neurones after cutting or crushing the sciatic nerve.Biochem. Soc. Trans. 16465–466.Google Scholar
  22. Redfern, P. H., Campbell, I. C., Davies, J. A., and Martin, K. F. (Eds.) (1985).Circadian Rhythms in the Central Nervous System, Macmillan, London.Google Scholar
  23. Rosenwasser, A. M., Trubowitsch, G., and Adler, N. T. (1985). Circadian rhythm in metabolic activity of suprachiasmatic, supraoptic and raphe nuclei.Neurosci Lett. 58183–187.Google Scholar
  24. Semba, J., Toru, M., and Mataga, N. (1984). Twenty-four hour rhythms of norepinephrine and serotonin in nucleus suprachiasmaticus, supraoptic and raphe nuclei.Sleep 7211–218.Google Scholar
  25. Stanley, H. F., and Fink, G. (1986). Synthesis of specific brain proteins is influenced by testosterone at mRNA level in the neonatal rat.Brain Res. 370223–231.Google Scholar
  26. Walker, J., and Agoston, D. V. (1987). The synaptic vesicle and the cytoskeleton.Biochem. J. 247249–258.Google Scholar
  27. Walker, J., Bousteadt, C. M., and Witzemann, V. (1985). Cytoskeletal proteins at the cholinergic synapse: distribution of desmin, actin, fodrin, neurofilaments and tubulin in Torpedo electric organ.Eur. J. Biol. Cell. 38123–133.Google Scholar
  28. Wirz-Justice, A. (1987). Circadian rhythms in mammalian neurotransmitter receptors.Prog. Neurobiol. 29219–259.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Juan Iovanna
    • 1
  • Nelson Dusetti
    • 1
  • Ezequiel Calvo
    • 1
  • Daniel P. Cardinali
    • 1
  1. 1.Departamento de Fisiología, Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations