Advertisement

Damage and synergic assumptions in fracture mechanic problems

  • Yu. G. Matvienko
Article
  • 19 Downloads

Keywords

Mechanic Problem Fracture Mechanic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. M. Kachanov, Fundamentals of Fracture Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  2. 2.
    Yu. N. Rabotnov, An Introduction into Fracture Mechanics [in Russian], Nauka, Moscow (1987).Google Scholar
  3. 3.
    V. V. Bolotin, Prediction of the Service Life of Machines and Structures [in Russian], Mashinostroenie, Moscow (1984).Google Scholar
  4. 4.
    M. P. Wnuk and R. D. Kriz, “CDM model of damage accumulation in laminated composites,” Int. J. Fract.,28, No. 3, 121–138 (1985).Google Scholar
  5. 5.
    C. H. Popelar and R. G. Hoagland, “On the nature of crack propagation and arrest in a damaging material,” Eng. Fract. Mech.,23, No. 1, 131–144 (1986).Google Scholar
  6. 6.
    S. Murakami, “Mechanical modelling of material damage,” Trans. ASME. J. Appl. Mech.,55, June, 280–286 (1988).Google Scholar
  7. 7.
    G. H. Haken, Synergies, Hierarchy of Instabilities and in Self-Organizing Systems and Devices [Russian translation], Mir, Moscow (1985).Google Scholar
  8. 8.
    V. S. Ivanova, “Mechanics and synergies of fatigue failure,” Fiz. Khim. Mekh. Mater., No. 1, 62–68 (1986).Google Scholar
  9. 9.
    V. M. Markochev, “Testing of materials and a system approach to the strength problem,” Zavod. Lab., No. 6, 57–63 (1987).Google Scholar
  10. 10.
    K. V. Frolov, Method of Improving Machines and Current Problems of Engineering [in Russian], Mashinostroenie, Moscow (1984).Google Scholar
  11. 11.
    Yu. G. Matvienko, “Damage kinetics in contact fatigue,” Fiz. Khim. Mekh. Mater., No. 3, 66–68 (1987).Google Scholar
  12. 12.
    P. C. Paris, M. P. Gomez, and W. E. Anderson, “A rational analytic theory of fatigue,” The Trend in Engineering,13, No. 1, 9–14 (1961).Google Scholar
  13. 13.
    S. Ya. Yarema, “Fundamentals and several problems of mechanics of fatigue failure,” Fiz. Khim. Mekh. Mater., No. 5, 17–29 (1987).Google Scholar
  14. 14.
    Yu. G. Matvienko and E. M. Morozov, “Relationship of criteria of nonlinear fracture mechanics,” Fiz. Khim. Mekh. Mater., No. 2, 3–10 (1989).Google Scholar
  15. 15.
    S. Ya. Yarema, “Correlation of parameters of the Paris equation and characteristics of the cyclic cracking resistance of materials,” Probl. Prochn., No. 9, 20–28 (1981).Google Scholar
  16. 16.
    N. M. Grinberg, “Physical mechanisms of fatigue failure of metals and alloys,” Fiz. Khim. Mekh. Mater., No. 5, 29–38 (1987).Google Scholar
  17. 17.
    G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).Google Scholar
  18. 18.
    O. N. Romaniv and G. N. Nikiforchin, Mechanics of Corrosion Failure of Structural Alloys [in Russian], Metallurgiya, Moscow (1986).Google Scholar
  19. 19.
    B. B. Chechulin and Yu. D. Khesin, Cyclic and Corrosion Strength of Titanium Alloys [in Russian], Metallurgiya, Moscow (1987).Google Scholar
  20. 20.
    Yu. G. Matvienko, “Corrosion damage of material and variation of critical brittleness temperature,” Fiz. Khim. Mekh. Mater., No. 3, 7–12 (1988).Google Scholar
  21. 21.
    Yu. G. Matvienko, “Two-parameter criterion of failure in relation to hardening of material,” Zavod. Lab., No. 9, 60–62 (1986).Google Scholar
  22. 22.
    Yu. G. Matvienko and A. M. Sokovikov, “Fracture. Cracking resistance,” Metalloved. Term. Obrab. (Itogi Nauki Tekh. VINITI AN SSSR), VINITI, Moscow (1988), pp. 3–40.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Yu. G. Matvienko
    • 1
  1. 1.All-Union Scientific Research Institute of Corrosion Protection of MetalsMoscow

Personalised recommendations