Cellular and Molecular Neurobiology

, Volume 7, Issue 4, pp 353–366 | Cite as

Neuroendocrine gene expression in the hypothalamus:In situ hybridization histochemical studies

  • W. Scott YoungIII
  • R. Thomas Zoeller
Review and Commentary

Summary

  1. 1.

    We have reviewed recent studies in whichin situ hybridization histochemistry (ISHH) was used to investigate the regulation of expression of neurohypophysial peptides and hypothalamic releasing hormones.

     
  2. 2.

    ISHH is a technique in which the presence and quantity of a specific mRNA can be determined in tissue sections with a high degree of resolution and sensitivity.

     
  3. 3.

    ISHH has been used to measure changes in cellular levels of mRNAs encoding vasopressin, oxytocin, corticotropin-releasing factor, gonadotropin-releasing hormone, thyrotropin-releasing hormone and somatostatin in response to various physiological challenges.

     
  4. 4.

    A theme emerging from these studies is that changes in levels of mRNA encoding neuroendocrine peptides reflect changes in biosynthesis and secretion.

     

Key words

paraventricular nucleus supraoptic nucleus preoptic area vasopressin oxytocin corticotropin-releasing factor thyrotropin-releasing factor gonadotropin-releasing factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, L. A., Vician, L., Clifton, D. K., and Steiner, R. A. (1987). Gonadotropin releasing-hormone (GnRH) mRNA content in GnRH neurons is similar in the brains of juvenile and adult male monkeys.Macaca fascicularis. Endocrine Soc. Abstr. 64.Google Scholar
  2. Adelman, J. P., Mason, A. J., Hayflick, J. S., and Seeburg, P. H. (1986). Isolation of the gene and hypothalamic cDNA for the common precursor of gonadotropin-releasing hormone and prolactin release-inhibiting factor in human and rat.Proc. Natl. Acad. Sci. USA 83179–183.Google Scholar
  3. Aizawa, T., and Greer, M. A. (1981). Delineation of the hypothalamic area controlling thyrotropin secretion in the rat.Endocrinology 1091731–1738.Google Scholar
  4. Antoni, F. A. (1986). Hypothalamic control of adrenocorticotropin secretion, advances since the discovery of 41-residue corticotropin-releasing factor.Endocrine Rev. 7351–378.Google Scholar
  5. Arentzen, R., Baldino, F., Jr., Davis, L. G., Higgins, G. A., Lin, Y., Manning, R. W., and Wolfson, B. (1985). In situ hybridization of putative somatostatin mRNA within hypothalamus of the rat using synthetic oligonucleotide probes.J. Cell. Biochem. 27415–422.Google Scholar
  6. Barry, J., Hoffman, G. E., and Wray, S. (1986). LHRH-containing systems. InHandbook of Chemical Neuroanatomy. GABA and Neuropeptides in the CNS, Part I (A. Björklund and T. Hökfelt, Eds.), Elsevier, New York, pp. 166–215.Google Scholar
  7. Brownstein, M. J., and Mezey, É. (1986). Multiple chemical messengers in hypothalamic magnocellular neurons.Prog. Brain Res. 68161–168.Google Scholar
  8. Brownstein, M. J., Eskay, R. L., and Palkovits, M. (1982). Thyrotropin releasing hormone in the median eminence is in processes of paraventricular neurons.Neuropeptides 2197–201.Google Scholar
  9. Burbach, J. P. H., De Hoop, M. J., Schmale, H., Richter, D., De Kloet, E. R., Ten Haaf, J. A., and De Wied, D. (1984). Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei.Neuroendocrinology 39582–584.Google Scholar
  10. Burbach, J. P. H., Van Tol, H. H. M., Bakkus, M. H. C., Schmale, H., and Ivell, R. (1986). Quantitation of vasopressin mRNA and oxytocin mRNA in hypothalamic nuclei by solution hybridization assays.J. Neurochem. 471814–1821.Google Scholar
  11. Burlet, A., Tonon, M.-C., Tankosic, P., Coy, D., and Vaudry, H. (1983). Comparative immunocytochemical localization of corticotropin releasing factor (CRF-41) and neurohypophyseal peotides in the brain of Brattleboro and Long-Evans rats.Neuroendocrinology 3764–72.Google Scholar
  12. Cattanach, B. M., Iddon, C. A., Charlton, H. M., Chiappa, S. A., and Fink, G. (1977). Gonadotropin releasing-hormone deficiency in a mutant mouse with hypogonadism.Nature 269338–340.Google Scholar
  13. Cheng, S. W. T., and North, W. G. (1986). Responsiveness of oxytocin-producing neurons to acute salt-loading in rats: Comparisons with vasopressin-producing neurons.Neuroendocrinology 42174–180.Google Scholar
  14. Cintra, A., Fuxe, K., Härfstrand, A., Agnati, L. F., Wilkström, A.-C., Okret, S., Vale, W., and Gustafsson, J.-Å. (1987). Presence of glucocorticoid receptor immunoreactivity in corticotrophin releasing factor and growth hormone releasing factor immunoreactive neurons of the rat di- and telencephalon.Neurosci. Lett. 7725–30.Google Scholar
  15. Davis, L. G., Arentzen, R., Reid, J. M., Manning, R. W., Wolfson, B., Lawrence, K. L., and Baldino F., Jr. (1986). Glucocorticoid sensitivity of vasopressin mRNA levels in the paraventricular nucleus of the rat.Proc. Natl. Acad. Sci. USA 831145–1149.Google Scholar
  16. Deschenes, R. J., Lorenz, L. J., Haun, R. S., Roos, B. A., Collier, K. J., and Dixon, J. E. (1984). Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin.Proc. Natl. Acad. Sci. USA 81726–730.Google Scholar
  17. Fuller, P. J., Clements, J. A., and Funder, J. W. (1985). Localization of arginine vasopressin-neurophysin II messenger ribonucleic acid in the hypothalamus of control and Brattleboro rats by hybridization histochemistry with a synthetic pentadecamer oligonucleotide probe.Endocrinology 1162366–2368.Google Scholar
  18. Gee, C. E., Chen, C.-L. C., Roberts, J. L., Rhompson, R., and Watson, S. J. (1983). Identification of proopiomelanocortin neurones in rat hypothalamus byin situ cDNA-mRNA hybridization.Nature 306374–376.Google Scholar
  19. Gillies, G. E., and Lowry, P. J. (1986). Adrenal function. InNeuroendocrinology (S. L. Lightman and B. J. Everitt, Eds.), Blackwell, London, pp. 360–388.Google Scholar
  20. Hoefler, H., Childers, H., Montminy, M. R., Lechan, R. M., Goodman, R. H., and Wolfe, H. J. (1986).In situ hybridization methods for the detection of somatostatin mRNA in tissue sections using antisense RNA probes.Histochem. J. 18597–604.Google Scholar
  21. Horn, A. M., Robinson, I. C. A. F., and Fink, G. (1985). Oxytocin and vasopressin in rat hypophysial portal blood: Experimental studies in normal and Brattleboro rats.J. Endocrinol. 117211–224.Google Scholar
  22. Ivell, R., and Richter, D. (1984). Structure and comparison of the oxytocin and vasopressin genes from rat.Proc. Natl. Acad. Sci. USA 812006–2010.Google Scholar
  23. Jackson, I. M. D., and Lechan, R. M. (1983). Thyrotropin-releasing hormone (TRH). InBrain Peptides (D. T. Krieger, M. J. Brownstein, and J. B. Martin, Eds.), John Wiley and Sons, New York, pp. 661–685.Google Scholar
  24. Jennes, L., and Stumpf, W. E. (1986). Gonadotropin-releasing hormone immunoreactive neurons with access to fenestrated capillaries in mouse brain.Neuroscience 13403–410.Google Scholar
  25. Hingami, H., Matsukura, S., Numa, S., and Imura, H. (1985). Effects of adrenalectomy and dexamethasone administration on the level of preprocorticotropin-releasing factor messenger ribonucleic acid (mRNA) in the hypothalamus and adrenocorticotropin/β-lipotropin precursor mRNA in the pituitary in rats.Endocrinology 1171314–1320.Google Scholar
  26. Kiss, J. Z., Mezey, É., and Skirboll, L. (1984). Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy.Proc. Natl. Acad. Sci. USA 811854–1858.Google Scholar
  27. Koller, K. J., Wolff, R. S., Warden, M. K., and Zoeller, R. T. (1987a). Thyroid hormones regulate thyrotropin-releasing hormone mRNA levels in the paraventricular nucleus.Proc. Natl. Acad. Sci. USA 847329–7333.Google Scholar
  28. Koller, K. J., Wolff, R. S., and Zoeller, R. T. (1987b). Thyroid hormone regulation of thyrotropin-releasing hormone mRNA in the paraventricular nucleus is independent of thyrotropin.Soc. Neurosci., Abstr. 378.17, p. 1372.Google Scholar
  29. Kovács, K., Kiss, J. Z., and Makara, G. B. (1986). Glucocorticoid implants around the hypothalamic paraventricular nucleus prevent the increase of corticotropin-releasing factor and arginine vasopressin immunostaining induced by adrenalectomy.Neuroendocrinology 44229–234.Google Scholar
  30. Kovács, K. J., and Mezey, É. (1987). Dexamethasone inhibits corticotropin releasing factor gene expression in the rat paraventricular nucleus.Neuroendocrinology 46365–368.Google Scholar
  31. Lechan, R. M., Wu, P., and Jackson, I. M. D. (1986b). Immunolocalization of the thyrotropin-releasing hormone prohormone in the rat central nervous system.Endocrinology 1191210–1216.Google Scholar
  32. Lechan, R. M., Wu, P., Jackson, I. M. D., Wolf, H., Cooperman, S., Mandel, G., and Goodman, R. H. (1986a). Thyrotropin-releasing hormone precursor: Characterization in rat brain.Science 231159–161.Google Scholar
  33. Lightman, S. L., and Everitt, B. J. (1981).Neuroendocrinology, Blackwell, London.Google Scholar
  34. Lightman, S. L., and Young, W. S. III (1987a). Changes in hypothalamic preproenkephalin A mRNA following stress and opiate withdrawal.Nature 328643–645.Google Scholar
  35. Lightman, S. L., and Young, W. S., III (1987b). Vasopressin, oxytocin, dynorphin, enkephalin, and corticotrophin releasing factor mRNA stimulation in the rat.J. Physiol. (Lond.)39423–39.Google Scholar
  36. Majzoub, J. A., Rich, A., vanBoom, J., and Habener, J. F. (1983). Vasopressin and oxytocin mRNA regulation in the rat assessed by hybridization with synthetic oligonucleotides.J. Biol. Chem. 25814061–14064.Google Scholar
  37. Martin, J. B., and Reichlin, S. (1987).Clinical Neuroendocrinology, F. A. Davis, Philadelphia.Google Scholar
  38. Mason, A. J., Hayflick, J. S., Zoeller, R. T., Young, W. S., III, Phillips, H. S., Nikolics, K., and Seeburg, P. H. (1986a). A deletion truncating the GnRH gene is responsible for hypogonadism in thehpg mouse.Science 2341366–1371.Google Scholar
  39. Mason, A. J., Pitts, S. L., Nikolics, K., Szonyi, E., Wilkox, J. N., Seeburg, P. H., and Stewart, T. A. (1986b). The hypogonadal mouse: Reproductive function restored by gene therapy.Science 2341372–1378.Google Scholar
  40. Mayo, K. E., Cerelli, G. M., Rosenfeld, M. G., and Evans, R. M. (1985). Characterization of cDNA and genomic clones encoding the precursor to rat hypothalamic growth hormone-releasing factor.Nature 314464–467.Google Scholar
  41. McCabe, J. T., Morrell, J. I., and Pfaff, D. W. (1986a). Measurement of expression of the vasopressin and oxytocin genes in single neurons byin situ hybridization. InNeuroendocrine Molecular Biology (G. Fink, A. J. Harmar, and K. W. McKerns, Eds.), Plenum Press, New York, pp. 219–229.Google Scholar
  42. McCabe, J. T., Morrell, J. I., Ivell, R., Schmale, H., Richter, D., and Pfaff, D. W. (1986b). Brattleboro rat hypothalamic neurons transcribe vasopressin gene: Evidence from in situ hybridization.Neuroendocrinology 44361–364.Google Scholar
  43. McCann, S. M., Lumpkin, M. D., Mizunuma, H., Khorram, O., Ottlecz, A., and Samson, W. K. (1984). Peptidergic and dopaminergic control of prolactin release.Trends Neurosci. 7127–131.Google Scholar
  44. Morley, J. E. (1981). Neuroendocrine control of thyrotropin secretion.Endocrine Rev. 2396–436.Google Scholar
  45. Pfaff, D. W. (1986). Gene expression in hypothalamic neurons: Luteinizing hormone-releasing hormone.J. Neurosci. Res. 16109–115.Google Scholar
  46. Plotsky, P. M., and Sawchenko, P. E. (1987). Hypophysial-portal plasma levels, median eminence content, and immunohistochemical staining of corticotropin-releasing factor, arginine vasopressin, and oxytocin after pharmacological adrenalectomy.Endocrinology 1201361–1369.Google Scholar
  47. Reppert, S. M., and Uhl, G. R. (1987). Vasopressin messenger ribonucleic acid in supraoptic and suprachiasmatic nuclei: Appearance and circadian regulation during development.Endocrinology 1202483–2487.Google Scholar
  48. Richter, K., Kawashima, E., Egger, R., and Kreil, G. (1984). Biosynthesis of thyrotroin releasing hormone in the skin ofXenopus laevis: Partial sequence of the precursor deduced from cloned cDNA.EMBO J. 3617–621.Google Scholar
  49. Robers, K. V., Vician, L., Steiner, R. A., and Clifton, D. K. (1987). Reduced preprosomatostain ribonucleic acid in the periventricular nucleus of hypophysectomized rats determined by quantitativein situ hybridization.Endocrinology 12190–93.Google Scholar
  50. Rothfeld, J. M., Hejtmancik, J. F., Conn, P. M., and Pfaff, D. W. (1987). LHRH messenger RNA in neurons in the intact and castrate male rat forebrain studied by in situ hybridization.Exp. Brain Res. 67113–118.Google Scholar
  51. Russell, J. T., Brownstein, M. J., and Gainer, H. (1980). [35S]Cysteine labeled peptides transported to the neurohypophyses of adrenalectomized, lactating, and Brattleboro rats.Brain Res. 201227–234.Google Scholar
  52. Sawchenko, P. E., Swanson, L. W., and Vale, W. W. (1984a). Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat.Proc. Natl. Acad. Sci. USA 811883–1887.Google Scholar
  53. Sawchenko, P. E., Swanson, L. W., and Vale, W. W. (1984b). Corticotropin-releasing factor: Co-expression within distinct subsets of oxytocin-, vasopressin-, and neurotensin-immunoreactive neurons in the hypothalamus of the male rat.J. Neurosci. 41118–1129.Google Scholar
  54. Schmale, H., and Richter, D. (1984). Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats.Nature 308705–709.Google Scholar
  55. Schmale, H., Ivell, R., Breindl, M., Darmer, D., and Richter, D. (1984). The mutant vasopressin gene from diabetes insipidus (Brattleboro) rats is transcribed but the message is not efficiently translated.EMBO J. 33289–3293.Google Scholar
  56. Seeburg, P. H., and Adelman, J. P. (1984). Characterization of cDNA for precursor of human luteinizing hormone-releasing hormone.Nature 311666–668.Google Scholar
  57. Segerson, T. P., Hoefler, H., Childers, H., Wolfe, H. J., Wu, P., Jackson, I. M. D., and Lechan, R. M. (1987). Localization of thyrotropin-releasing hormone prohormone messenger ribonucleic acid in rat brain by in situ hybridization.Endocrinology 12198–107.Google Scholar
  58. Sherman, T. G., Civelli, O., Douglass, J., Herbert, E., Burke, S., and Watson, S. J. (1986a). Hypothalamic dynorphin and vasopressin mRNA expression in normal and Brattleboro rats.Fed. Proc. 452323–2327.Google Scholar
  59. Sherman, T. G., McKelvy, J., and Watson, S. J. (1986b). Vasopressin mRNA regulation in individual hypothalamic nuclei: A northern andin situ hybridization analysis.J. Neurosci. 6 1685–1694.Google Scholar
  60. Sherwood, N. M., Chiappa, S. A., Sarkar, D. K., and Fink, G. (1980). Gonadotropin-releasing hormone (GnRH) in pituitary stalk blood from proestrous rats: Effects of anesthetics and relationship between stored and released GnRH and luteinizing hormone.Endocrinology 1071410–1416.Google Scholar
  61. Shivers, B. D., Harlan, R. E., Morrell, J. I., and Pfaff, D. W. (1983). Absence of oestradiol concentration in cell nuclei of LHRH-immunoreactive neurones.Nature 304345–347.Google Scholar
  62. Shivers, B. D., Harlan, R. E., Hejtmancik, J. F., Conn, P. M., and Pfaff, D. W. (1986). Localization of cells containing LHRH-like mRNA in rat forebrain using in situ hybridization.Endocrinology 118883–885.Google Scholar
  63. Silverman, A.-J., Jhamandas, J., and Renaud, L. (1987). Localization of luteinizing hormone-releasing hormone (LHRH) neurons that project to the median eminence.J. Neurosci. 72312–2319.Google Scholar
  64. Standish, L. J., Adams, L. A., Vician, L., Clifton, D. K., and Steiner, R. A. (1987). Neuroanatomical localization of cells containing gonadotropin-releasing hormone messenger ribonucleic acid in the primate brain by in situ hybridization histochemistry.Mol. Endocrinol. 1371–376.Google Scholar
  65. Swaab, D. F., Pool, C. W., and Nijveldt, F. (1975). Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophyseal system.J. Neural Transm. 36195–215.Google Scholar
  66. Terry, L. C., and Crowley, W. R. (1980). The effect of hypophysectomy on somatostatin-like immunoreactivity in discrete hypothalamic and extrahypothalamic nuclei.Endocrinology 1071771–1775.Google Scholar
  67. Tramu, G., Croix, C., and Pillez, A. (1983). Ability of the CRF-immunoreactive neurons of the paraventricular nucleus to produce a vasopressin-like material.Neuroendocrinology 37467–469.Google Scholar
  68. Uhl, G. R. (1986).In Situ Hubridization in Brain, Plenum Press, New York.Google Scholar
  69. Uhl, G. R., and Reppert, S. M. (1986). Suprachiasmatic nucleus vasopressin messenger RNA: Circadian variation in normal and Brattleboro rats.Science 232390–393.Google Scholar
  70. Uhl, G. R., and Sasek, C. A. (1986). Somatostatin mRNA: Regional variation in hybridization densities in individual neurons.J. Neurosci. 63258–3264.Google Scholar
  71. Uhl, G. R., Zingg, H. H., and Habener, J. F. (1985). Vasopressin mRNAin situ hybridization: Localization and regulation studied with oligonucleotide cDNA probes in normal and Brattleboro rat hypothalamus.Proc. Natl. Acad. Sci. USA 825555–5559.Google Scholar
  72. Vandesande, F., and Dierickx, K. (1975). Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat.Cell Tissue Res. 164153–162.Google Scholar
  73. Van Rol, H. H. M. (1987).Regulation of Vasopressin and Oxytocin Gene Expression in the H ypothalamo-Neurohypophyseal System of the Rat, Thesis, University of Utrecht, The Netherlands.Google Scholar
  74. Van Tol, H. H. M., Voorhuis, T. A. M., Snijdewint, F. G. M., Boer, G. J., and Burbach, J. P. H. (1986). Vasopressin gene expression is attenuated in the fetal Brattleboro rat.FEBS Lett. 204101–105.Google Scholar
  75. Van Tol, H. H. M., Voorhuis, D. T. A. M., and Burbach, J. P. H. (1987). Oxytocin gene expression in discrete hypothalamic magnocellular cell groups is stimulated by prolonged salt loading.Endocrinology 12071–76.Google Scholar
  76. Whitnall, M. H., Key, S., Ben-Barak, Y., Ozato, K., and Gainer, H. (1985). Neurophysin in the hypothalamo-neurohypophysial system. II. Immunocytochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons.J. Neurosci. 598–109.Google Scholar
  77. Wise, P. M., Rance, N., and Barraclough, C. A. (1981). Effects of estradiol and progesterone on catecholamine turnover rates in discrete hypothalamic regions in ovariectomized rats.Endocrinology 1082186–2193.Google Scholar
  78. Wolfson, B., Manning, R. W., Davis, L. G., Arentzen, R., and Baldino, F., Jr. (1985). Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy.Nature 31559–61.Google Scholar
  79. Wray, S., and Hoffman, G. E. (1986). Postnatal morphological changes in rat LHRH neurons correlated with sexual maturation.Neuroendocrinology 4393–99.Google Scholar
  80. Wray, S., Gahwiler, B., and Gainer, H. (1986). In vitro development of LHRH cell subtypes.Soc. Neurosci. Abstr. 13322.10.Google Scholar
  81. Wray, S., Zoeller, R. T., and Gainer, H. (1987). Quantitative hybridization histochemistry for LHRH mRNA in organotypic cultures.Soc. Neurosci. Abstr. 16301.3.Google Scholar
  82. Young, W. S., III (1986). Corticotropin-releasing factor mRNA in the hypothalamus is affected differently by drinking saline and by dehydration.FEBS Lett. 208158–162.Google Scholar
  83. Young, W. S., III, Mezey, É., and Siegel, R. E. (1986a). Quantitativein situ hybridization histochemistry reveals increased levels of croticotropin-releasing factor mRNA after adrenalectomy in rats.Neurosci. Lett. 20198–203.Google Scholar
  84. Young, W. S., III, Mezey, É., and Siegel, R. E. (1986b). Vasopressin and oxytocin mRNAs in adrenalectomized and Brattleboro rats: Analysis by quantitative in situ hybridization histochemistry.Mol. Brain Res. 1231–241.Google Scholar
  85. Young, W. S., III, Bonner, T. I., and Brann, M. R. (1986c). Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain.Proc. Natl. Acad. Sci. USA 839827–9831.Google Scholar
  86. Young, W. S., III, Burch, R., and Shepard, E. (1987a). Increased plasma osmolality produces increased levels of GTP-binding proteins, Gs and Giα-subunit mRNAs in the paraventricular and supraoptic nuclei.Soc. Neurosci. Abstr. 16450.11.Google Scholar
  87. Young, W. S., III, Warden, M., and Mezey, É. (1987b). Tyrosine hydroxylase mRNA is increased by hyperosmotic stimuli in the paraventricular and supraoptic nuclei.Neuroendocrinology 46439–444.Google Scholar
  88. Zingg, H. H., Lefebvre, D., and Almazan, G. (1986). Regulation of vasopressin gene expression in rat hypothalamic neurons. Response to osmotic stimulation.J. Biol. Chem. 26112956–12959.Google Scholar
  89. Zoeller, R. T., and Young, W. S., III. (1987). Cellular levels of messenger RNA encoding gonadotropin-releasing hormone (GnRH) are elevated after the LH surge on the day of prestrus.Soc. Neurosci. Abstr. 1610.7.Google Scholar
  90. Zoeller, R. T., Seeburg, P. H., and Young, W. S., III. (1986). Cellular levels of messenger RNA encoding gonadotropin-releasing hormone are decreased by estrogen treatment.Endocrine Soc., Abstr. 32.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • W. Scott YoungIII
    • 1
  • R. Thomas Zoeller
    • 1
  1. 1.Laboratory of Cell BiologyNational Institute of Mental HealthBethesdaUSA

Personalised recommendations