Cellular and Molecular Neurobiology

, Volume 10, Issue 1, pp 59–71 | Cite as

Quantitativein situ hybridization to measure single-cell changes in vasopressin and oxytocin mRNA levels after osmotic stimulation

  • Joseph T. McCabe
  • Mitsuhiro Kawata
  • Yutaka Sano
  • Donald W. Pfaff
  • Robert A. Desharnais


  1. 1.

    The measurement of cellular mRNA content by quantitativein situ hybridization is a valuable approach to the study of gene expression in brain since this tissue exhibits a high degree of phenotypic heterogeneity.

  2. 2.

    The cellular content of vasopressin and oxytocin mRNA in hypothalamo-neurohypophysial system neurons was altered by maintaining rats for 24 hr on 2% sodium chloride water.

  3. 3.

    Statistical and graphical techniques were then used to analyze cell by cell how mRNA levels were altered as a result of osmotic stimulation. We propose that the negative binomial probability distribution is a suitable model to describe how mRNA content varies across a defined cell population. For both measures of oxytocin and vasopressin mRNA levels, maximum-likelihood estimation indicated that this model adequately described empirical findings obtained from rats drinking tap water or salt water.

  4. 4.

    Both graphical and statistical analyses suggested how the defined neural system responds to osmotic stimulation: mRNA content was altered as a multiplicative function of “initial state.” The utility and limitations of the quantitative approach are discussed.


Key words

autoradiography morphometry biological models in situ hybridization neurohypophysial system supraoptic nucleus vasopressin oxytocin messenger RNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983).Graphical Methods for Data Analysis, Wadsworth, Belmont, CA.Google Scholar
  2. Defendini, R., and Zimmerman, E. A. (1978). The magnocellular neuro-secretory system of the mammalian hypothalamus. InThe Hypothalamus (S. Reichlin, R. J. Baldessarini, and J. B. Martin, Eds.), Raven Press, New York, pp. 137–152.Google Scholar
  3. England, J. M., and Rogers, A. W. (1970). The statistical analysis of autoradiographs. I. Grain count distributions over uniformly labelled sources.J. Microsc. 92159–165.Google Scholar
  4. Hou-Yu, A., Lamme, A. T., Zimmerman, E. A., and Silverman, A.-J. (1986). Comparative distribution of vasopressin and oxytocin neurons in the rat brain using a double-label procedure.Neuroendocrinology 44235–246.Google Scholar
  5. Hyodo, S., Fujiwara, M., Sato, M., and Urano, A. (1988). Molecular- and immuno-histochemical study on expression of vasopressin and oxytocin genes following sodium loading.Zoo. Sci. 51033–1042.Google Scholar
  6. Ivell, R., and Richter, D. (1984). Structure and comparison of the oxytocin and vasopressin genes from rat.Proc. Natl. Acad. Sci. USA 812006–2010.Google Scholar
  7. Kawata, M. (1983). Immunohistochemistry of oxytocin and vasopressin neurons in dog and rat under normal and experimental conditions. InStructure and Function of Peptidergic and Aminergic Neurons (Y. Sano, Y. Ibata, and E. A. Zimmerman, Eds.), JSSP-VNU Science Press, Tokyo, pp. 33–53.Google Scholar
  8. Kawata, M., McCabe, J. T., Harrington, C., Chikaraishi, D., and Pfaff, D. W. (1988a).In situ hybridization analysis of osmotic stimulus-induced changes in ribosomal RNA in rat supraoptic nucleus.J. Comp. Neurol. 270528–536.Google Scholar
  9. Kawata, M., McCabe, J. T., and Pfaff, D. W. (1988b).In situ hybridization histochemistry with oxytocin synthetic oligonucleotide: Strategy for making the probe and its application.Brain Res. Bull. 20693–697.Google Scholar
  10. Kawata, M., McCabe, J. T., Pfaff, D. W., and Sano, Y. (1988c). Gene expression for posterior pituitary hormones studied byin situ hybridization histochemistry. InRecent Progress in Posterior Pituitary Hormones 1988 (S. Yoshida and L. Share, Eds.), Elsevier Science, Amsterdam, pp. 249–255.Google Scholar
  11. Kendall, M., and Stuart, A. (1977).The Advanced Theory of Statistics, Vol. 1, 4th ed., Griffin, London.Google Scholar
  12. Lewis, M. E., Rogers, W. T., Krause, R. G., II, and Schwaber, J. S. (1989). Quantitation and digital representation ofin situ hybridization histochemistry.Met. Enzymol. 168808–821.Google Scholar
  13. Lightman, S. L., and Young, W. S., III (1987). Vasopressin, oxytocin, dynorphin, enkephalin and corticotrophin-releasing factor mRNA stimulation in the rat.J. Physiol. 39423–39.Google Scholar
  14. McCabe, J. T., and Pfaff, D. W. (1989).In situ hybridization: A methodological guide.Meth. Neurosci. 198–126.Google Scholar
  15. McCabe, J. T., Morrell, J. I., Ivell, R., Schmale, H., Richter, D., and Pfaff, D. W. (1986a).In situ hybridization to localize rRNA and mRNA in mammalian neurons.J. Histochem. Cytochem. 3445–50.Google Scholar
  16. McCabe, J. T., Morrell, J. I., and Pfaff, D. W. (1986b).In situ hybridization as a quantitative autoradiographic method: An example from vasopressin and oxytocin gene transcription in the Brattleboro rat. InIn Situ Hybridization in Brain (G. R. Uhl, Ed.), Plenum Press, New York, pp. 73–95.Google Scholar
  17. McCabe, J. T., Morrell, J. I., and Pfaff, D. W. (1986c). Measurement of vasopressin and oxytocin genes in single neurons byin situ hybridization. InNeuroendocrine Molecular Biology (G. Fink, A. J. Harmar, and K. W. McKerns, Eds.), Plenum Press, New York, pp. 219–229.Google Scholar
  18. McCabe, J. T., Desharnais, R. A., and Pfaff, D. W. (1989). Graphical and statistical approaches to data analysis forin situ hybridization.Meth. Enzymol. 168822–848.Google Scholar
  19. Przybylski, R. J. (1970). Principles of quantitative autoradiography. InIntroduction to Quantitative Cytochemistry—II (G. L. Wied and G. F. Bahr, Eds.), Academic Press, New York, pp. 477–505.Google Scholar
  20. Rhodes, C. H., Morrell, J. I., and Pfaff, D. W. (1981). Immunohistochemical analysis of magnocellular elements in rat hypothalamus: Distribution and numbers of neurophysin, oxytocin and vasopressin containing cells.J. Comp. Neurol. 19845–64.Google Scholar
  21. Schmale, H., Ivell, R., Briendl, M., Darmer, D., and Richter, D. (1984). The mutant vasopressin gene from diabetes insipidus (Brattleboro) rats is transcribed but the message is not efficiently translated.EMBO J. 33289–3293.Google Scholar
  22. Sherman, T. G., McKelvey, J. F., and Watson, S. J. (1986). Vasopressin mRNA regulation in individual hypothalamic nuclei: A Northern andin situ hybridization analysis.J. Neurosci. 61685–1694.Google Scholar
  23. Takamatsu, T., Kitamura, T., and Fujita, S. (1986). Quantitative fluorescence image analysis.Acta Histochem. Cytochem. 1961–71.Google Scholar
  24. Tukey, J. W. (1977).Exploratory Data Analysis, Addison-Wesley, Reading, MA.Google Scholar
  25. Uhl, G. R. (1989).In situ hybridization: Quantitation using radiolabled hybridization probes.Meth. Enzymol. 168741–752.Google Scholar
  26. Vandesande, F., and Dierickx, K. (1975). Identification of the vasopressin producing and oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat.Cell Tissue Res. 164153–162.Google Scholar
  27. Van Tol, H. H. M., Voorhuis, D. Th. A. M., and Burbach, J. P. H. (1987). Oxytocin gene expression in discrete hypothalamic magnocellular cell groups is stimulated by prolonged salt loading.Endocrinology 12071–76.Google Scholar
  28. Wilk, M. B., and Gnanadesikan, R. (1968). Probability plotting methods for the analysis of data.Biometrika 551–17.Google Scholar
  29. Young, W. S., III (1989).In situ hybridization histochemical detection of neuropeptide mRNAs using DNA and RNA probes.Meth. Enzymol. 168702–710.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Joseph T. McCabe
    • 1
  • Mitsuhiro Kawata
    • 2
  • Yutaka Sano
    • 2
  • Donald W. Pfaff
    • 1
  • Robert A. Desharnais
    • 3
  1. 1.Neurobiology & Behavior LaboratoryThe Rockefeller UniversityNew YorkUSA
  2. 2.Department of AnatomyKyoto Prefectural University School of MedicineKyotoJapan
  3. 3.Department of BiologyCalifornia State UniversityLos AngelesUSA

Personalised recommendations