Cellular and Molecular Neurobiology

, Volume 10, Issue 1, pp 41–50 | Cite as

Tyrosine hydroxylase and cholecystokinin mRNA levels in the substantia nigra, ventral tegmental area, and locus ceruleus are unaffected by acute and chronic haloperidol administration

  • Sandra L. Cottingham
  • David Pickar
  • Thomas K. Shimotake
  • Pascale Montpied
  • Steven M. Paul
  • Jacqueline N. Crawley


  1. 1.

    The studies described herein were designed to test the hypothesis that a neuroleptic, haloperidol, may alter the level of expression of the tyrosine hydroxylase and cholecystokinin genes in discrete brain regions.

  2. 2.

    In situ hybridization was employed to quantitate changes in concentration of mRNA for tyrosine hydroxylase and cholecystokinin in the ventral tegmental area, substantia nigra, and locus ceruleus after acute or chronic treatment with haloperidol or vehicle.

  3. 3.

    Haloperidol had no effect on the level of tyrosine hydroxylase or cholecystokinin mRNAs, in the ventral tegmentum, substantia nigra, or locus ceruleus, at either 3 or 19 days of drug administration.

  4. 4.

    These data suggest that haloperidol administration does not alter the level of tyrosine hydroxylase or cholecystokinin mRNAs in midbrain dopamine neurons of the rat.


Key words

tyrosine hydroxylase cholecystokinin mRNA in situ hybridization antipsychotics haloperidol reserpine substantia nigra ventral tegmental area locus ceruleus catecholamine dopamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacopoulos, N. G., Bustos, G., Redmond, D. E., Baulu, J., and Roth, R. H. (1978). Regional sensitivity of primate brain dopaminergic neurons to haloperidol: Alterations following chronic treatment.Brain Res. 157396–401.Google Scholar
  2. Bonnemann, C., Giraud, P., Eiden, L. E., and Meyer, D. K. (1987). Measurement of mRNA specific for preprocholecystokinin in rat caudatoputamen and areas projecting to it.Neurochem. Int. 10521–524.Google Scholar
  3. Bunney, B. S. (1984). Antipsychotic drug effects on the electrical activity of dopaminergic neurons.Trends Neurosci. 1212–215.Google Scholar
  4. Bunney, B. S. Walters, J. R., Roth, R. H., and Aghajanian, G. K. (1973). Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity.J. Pharmacol. Exp. Ther. 185560–571.Google Scholar
  5. Burgunder, J.-M., and Young, W. S., III (1988). The distribution of thalamic projection neurons containing cholecystokinin messenger RNA, usingin situ hybridization histochemistry and retrograde labeling.Mol. Brain Res. 4179–189.Google Scholar
  6. Carlsson, A. (1978). Antipsychotic drugs, neurotransmitters and schizophrenia.Am. J. Psychiat. 135164–173.Google Scholar
  7. Crawley, J. N. (1989). Microinjection of cholecystokinin into the rat ventral tegmental area potentiates dopamine-induced hypolocomotion.Synapse 3346–355.Google Scholar
  8. Crawley, J. N., Stivers, J. A., Blumstein, K. L., and Paul, S. M. (1985). Cholecystokinin potentiates dopamine-mediated behaviors: Evidence for modulation specific to a site of coexistence.J. Neurosci. 51972–1983.Google Scholar
  9. Deschenes, R. J., Lorenz, L. F., Haun, R. S., Roos, B. A., Collier, K. J., and Dixon, J. E. (1984). Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin.Proc. Natl. Acad. Sci. USA 81726–730.Google Scholar
  10. Faucon Biguet, N., Buda, M., Lamouroux, A., Samolyk, D., and Mallet, J. (1986). Time course of the changes of TH mRNA in rat brain and adrenal medulla after a single injection of reserpine.EMBO J. 5287–291.Google Scholar
  11. Freeman, A. S., and Bunney, B. S. (1987). Activity of A9 and A10 dopaminergic neurons in unrestrained rats: Further characterization and effects of apomorphine and cholecystokinin.Brain Res. 405 46–55.Google Scholar
  12. Frey, P. (1983). Cholecystokinin octapeptide levels in rat brain are changed after subchronic neuroleptic treatment.Eur. J. Pharmacol. 9587–92.Google Scholar
  13. Fuxe, K., Andersson, K., Locatelli, V., Agnati, L. F., Hökfelt, T., Skirboll, L., and Mutt, V. (1983). Cholecystokinin peptides produced marked reduction of dopamine turnover in discrete areas in the rat brain following intraventricular injection.Eur. J. Pharmacol. 67329–331.Google Scholar
  14. Grima, B., Lamouroux, A., Blanot, F., Faucon Biguet, N., and Mallett, J. (1985). Complete coding sequence of rat tyrosine hydroxylase mRNA.Proc. Natl. Acad. Sci. USA 82617–621.Google Scholar
  15. Guidotti, A. (1980) Regulation of tyrosine hydroxylase after chronic treatment with classic and atypical antischizophrenic drugs.Adv. Biochem. Psychopharmacol. 241–8.Google Scholar
  16. Gysling, K., and Beinfeld, M. C. (1984). Failure of chronic haloperidol treatment to alter levels of cholecystokinin in the rat brain striatum and olfactory tubercle-nucleus accumbens area.Neuropeptides 4421–423.Google Scholar
  17. Han, V. K. M., Snovweart, J., Towle, A. C., Luna, P. K., and Lauder, J. M. (1987). Cellular localization of tyrosine hydroxylase mRNA and its regulation in the rat adrenal medulla and brain byin situ hybridization with an oligodeoxyribonucleotide probe.J. Neurosci. Res. 1711–18.Google Scholar
  18. Hökfelt, T., Skirboll, L., Rehfeld, J. F., Goldstein, M., Markey, K., and Dann, O. (1980). A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: Evidence from immunohistochemistry combined with retrograde tracing.Neuroscience 52093–2124.Google Scholar
  19. Hommer, D. W., and Skirboll, L. R. (1983). Cholecystokinin-like peptides potentiate apomorphineinduced inhibition of dopamine neurons.Eur. J. Pharmacol. 91151–152.Google Scholar
  20. Joh, T. H., Park, D. H., and Reis, D. J. (1978). Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: A mechanism of enzyme activation.Proc. Natl. Acad. Sci. USA 754744–4748.Google Scholar
  21. Lane, R. F., Blaha, C. D., and Phillips, A. G. (1986). In vivo electro-chemical analysis of cholecystokinin-induced inhibition of dopamine release in the nucleus accumbens.Brain Res. 397200–204.Google Scholar
  22. Lerner, P., Nose, P., Gordon, E. K., and Lovenberg, W. (1977). Haloperidol: Effect of long-term treatment on rat striatal dopamine synthesis and turnover.Science 197181–183.Google Scholar
  23. Lovenberg, W., Bruckwick, E. A., and Hanbauer, I. (1975). ATP, cyclic AMP, and magnesium increase the affinity of rat striatal tyrosine hydroxylase for its cofactor.Proc. Natl. Acad. Sci. USA 722955–2958.Google Scholar
  24. Paxinos, G., and Watson, C. (1986).The Rat Brain in Stereotaxic Coordinates, 2nd ed., Academic Press, New York.Google Scholar
  25. Pickar, D. (1988). Perspectives on a time-dependent model of neuroleptic actionSchizo.Bull. 14255–268.Google Scholar
  26. Radke, J. M., MacLennan, A. J., Beinfeld, M. C., Bissette, G., Nemeroff, C. B., Vincent, S. R., and Fibiger, H. C. (1989). Effects of short-and long-term haloperidol administration and withdrawal on regional brain cholecystokinin and neurotensin concentrations in the rat.Brain Res. 480178–183.Google Scholar
  27. Roth, R. H. (1983). Neuroleptics: Functional chemistry. InNeuroleptics: Neurochemical, Behavioral and Clinical Perspectives (J. T. Coyle and S. J. Enna, Eds.), Raven Press, New York, pp. 119–156.Google Scholar
  28. Ruggeri, M., Ungerstedt, U., Agnati, L. F., Mutt, V., Härfstrand, A., and Fuxe, K. (1987). Effects of cholecystokinin peptides and neurotensin on dopamine release and metabolism in the rostral and caudal part of the nucleus accumbens using intracerebral dialysis in the anesthetized rat.Neurochem. Int. 10(4):509–520.Google Scholar
  29. Savasta, M., Palacios, J. M., and Mengod, G. (1988). Regional distribution of the mRNA coding for the neuropeptide cholecystokinin in rat brain studied byin situ hybridization.Neurosci. Lett. 936208–6212.Google Scholar
  30. Savasta, M., Ruberte, E., Palacios, J., M., and Mengod, G. (1989). The colocalization of cholecystokinin and tyrosine hydroxylase mRNAs in mesencephalic dopaminergic neurons in the rat brain examined byin situ hybridization.Neuroscience 29363–369.Google Scholar
  31. Seroogy, J. B., Schalling, J., Brené, S., Dagerlind, Å., Chai, S. Y., Hökfelt, T., Persson, H., Brownstein, M., Huan, R., Dixon, J., Filer, D., Schlessinger, D., and Goldstein, M. (1989). Cholecystokinin and tyrosine hydroxylase messenger RNAs in neurons of rat mesencephalon: Peptide/monoamine coexistence studies usingin situ hybridization combined with immunocytochemistry.Exp. Brain Res. 74149–162.Google Scholar
  32. Skirboll, L. R., Grace, A. A., Hommer, D. W., Rehfeld, J., Goldstein, M., Hökfelt, T., and Bunney, B. S. (1981). Peptide-monoamine coexistence: Studies of the actions of cholecystokinin-like peptide on the electrical activity of midbrain dopamine neurons.Neuroscience 62111–2124.Google Scholar
  33. Voight, M. M., and Uhl, G. R. (1988). Preprocholecystokinin mRNA in rat brain: Regional expression includes thalamus.Mol. Brain Res. 4247–253.Google Scholar
  34. Vuillet, P. R., Woodgett, J. R., and Cohen, P. (1980). Tyrosine hydroxylase: A substrate of cyclic AMP-dependent protein kinase.Proc. Natl. Acad. Sci. USA 7792–96.Google Scholar
  35. Young, W. S., III, Bonner, T. I., and Brann, M. R. (1986). Mesencephalic neurons regulate the expression of neuropeptide mRNAs in the rat forebrain.Proc. Natl. Acad. Sci. USA 839827–9831.Google Scholar
  36. Zivcovic, B., Guidotti, A., and Costa, E. (1974). Effects of neuroleptics on striatal tyrosine hydroxylase: Changes in affinity for the pteridine cofactor.Mol. Pharmacol. 10727–735.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Sandra L. Cottingham
    • 1
  • David Pickar
    • 1
  • Thomas K. Shimotake
    • 1
  • Pascale Montpied
    • 1
  • Steven M. Paul
    • 1
  • Jacqueline N. Crawley
    • 1
  1. 1.Clinical Neuroscience BranchBethesdaUSA

Personalised recommendations