Advertisement

Cellular and Molecular Neurobiology

, Volume 4, Issue 3, pp 263–271 | Cite as

A study of the cholinolytic actions of strychnine using the technique of concentration jump relaxation analysis

  • N. Traverse Slater
  • David O. Carpenter
Article

Summary

  1. 1.

    The blocking actions of strychnine on excitatory acetylcholine (ACh) responses in isolated, voltage clampedAplysia neuronal cell bodies has been studied using a rapid drug application technique.

     
  2. 2.

    Rapid microperfusion of strychnine (10–50µM) produced a reduction of the steady-state ACh-induced inward current inAplysia neurons which decayed exponentially with a highly dose-dependent time constant. At the cessation of strychnine perfusion the ACh-induced current recovered to its original value with an exponential time course which was not sensitive to the dose of strychnine previously applied.

     
  3. 3.

    The calculated association (k1) and dissociation (k-1) constants for a pseudo-first-order reaction between strychnine and its binding site werek1 = 1.2 × 104M−1 · sec−1 andk-1 = 0.12 sec−1 (KD = 1 × 10−5M−1).

     
  4. 4.

    These results demonstrate that concentration jump relaxation experiments can be performed on isolated neurons for the study of voltage-independent antagonists by the use of rapid microperfusion systems and provide the first direct estimates to date of the rate constants of the cholinolytic effect of strychnine.

     

Key words

strychnine acetylcholine receptors Aplysia relaxation analysis isolated neurons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P. R. (1975). Kinetics of agonist conductance changes during hyperpolarization at frog endplates.Br. J. Pharmacol. 53308–310.Google Scholar
  2. Alving, B. O. (1961). The action of strychnine at cholinergic junctions.Arch. Int. Pharmacodyn. Ther. 131123–150.Google Scholar
  3. Ascher, P., Marty, A. and Neild, T. O. (1978a). Lifetime and elementary conductance of the channels mediating the excitatory effects of acetylcholine inAplysia neurones.J. Physiol. Lond. 278177–206.Google Scholar
  4. Ascher, P., Marty, A. and Neild, T. O. (1978b). The mode of action of antagonists of the excitatory response to acetylcholine inAplysia neurones.J. Physiol. Lond. 278207–235.Google Scholar
  5. Ascher, P., Large, W. A. and Rang, H. P. (1979). Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells.J. Physiol. Lond. 295139–170.Google Scholar
  6. Bernasconi, C. (1976).Relaxation Kinetics, Academic Press, New York.Google Scholar
  7. Clapham, D. E., and Neher, E. (1984). Substance P reduces acetylcholine-induced currents in isolated bovine chromaffin cells.J. Physiol. Lond. 347255–277.Google Scholar
  8. Colquhoun, D. (1979). The link between drug binding and response: Theories and observations. InThe Receptors. A Comprehensive Treatise, Vol. 1. General Principles and Procedures, (O'Brien, R. D., Ed.), Plenum, New York, pp. 93–142.Google Scholar
  9. Colquhoun, D. (1981). How fast do drugs work? InTowards Understanding Receptors (Lamble, J. W., Ed.), Elsevier, Amsterdam, pp. 16–27.Google Scholar
  10. Curtis, D. R., Duggan, A. W., and Johnston, G. A. R. (1971). The specificity of strychnine as a glycine antagonist in the mammalian spinal cord.Exp. Brain Res. 12547–565.Google Scholar
  11. David, J. A., and Sattelle, D. B. (1984). Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach(Periplaneta americana).J. Exp. Biol. 108119–136.Google Scholar
  12. Faber, D. S., and Klee, M. R. (1974). Strychnine interactions with acetylcholine, dopamine and serotonin receptors inAplysia neurons.Brain Res. 65109–126.Google Scholar
  13. Fersht, A. (1977).Enzyme Structure and Function, W. H. Freeman, San Francisco, pp. 126–132.Google Scholar
  14. Gutfreund, H. (1971). Transients and relaxation kinetics of enzyme reactions.Annu. Rev. Biochem. 40315–344.Google Scholar
  15. Hammes, G. G. (1974).Investigation of Rates and Mechanisms of Reactions, Techniques of Chemistry, Vol. 6. Part II. Investigation of Elementary Reaction Steps in Solution and Very Fast Reactions. (Weissberger, A, Ed.), Wiley Interscience, New York.Google Scholar
  16. Katz, B., and Miledi, R. (1978). A re-examination of curare action at the motor endplate.Proc. R. Soc. Lond. B. 203119–133.Google Scholar
  17. Kehoe, J. — S. (1979). Acetylcholine receptors on molluscan neurones. InAdvances in Pharmacology and Therapeutics, Vol. 8. Drug-Action Modification—Comparative Pharmacology, (Oliver, G. Ed.), Pergamon, Oxford, pp. 285–298.Google Scholar
  18. Lanari, A., and Luco, J. V. (1939). The depressant action of strychnine on the superior cervical sympathetic ganglion and on skeletal muscle.Am. J. Physiol. 126227–282.Google Scholar
  19. Lux, H. D. (1974). The kinetics of extracellular potassium: Relation to epileptogenesis.Epilepsia 15375–393.Google Scholar
  20. Marty, A. (1978). Noise and relaxation studies of acetylcholine induced currents in the presence of procaine.J. Physiol. Lond. 278237–250.Google Scholar
  21. Neher, E., and Sakmann, B. (1975). Voltage dependence of drug-induced conductance in frog neuromuscular junction.Proc. Natl. Acad. Sci. USA 722140–2144.Google Scholar
  22. Ono, J. K., and Salvaterra, P. M. (1981). Snakeα-toxin effects on cholinergic and noncholinergic responses ofAplysia californica neurons.J. Neurosci. 1259–270.Google Scholar
  23. Osterrieder, W., Noma, A., and Trautwein, W. (1980). On the kinetics of the potassium channel activated by acetylcholine in the S-A node of the rabbit heart.Pflugers Arch. 386101–109.Google Scholar
  24. Rang, H. P. (1975). Acetylcholine receptorsQ.Rev. Biophys. 7283–399.Google Scholar
  25. Sheridan, R. E., and Lester, H. A. (1975). Relaxation measurements on the acetylcholine receptor.Proc. Natl. Acad. Sci. USA 723496–3500.Google Scholar
  26. Slater, N. T., Haas, H. L., and Carpenter, D. O. (1983). Kinetics of acetylcholine-activated cation channel blockade by the calcium antagonist D-600 inAplysia neurons.Cell. Mol. Neurobiol. 3329–344.Google Scholar
  27. Slater, N. T., Carpenter, D. O., Haas, H. L., and David, J. A. (1984a). Blocking kinetics at excitatory acetylcholine responses onAplysia neurons.Biophys. J. 4524–25.Google Scholar
  28. Slater, N. T., Hall, A. F., and Carpenter, D. O. (1984b). Kinetic properties of cholinergic desensitization inAplysia neurons.Proc. R. Soc. Lond. B (in press).Google Scholar
  29. van Ginneken, C. A. M. (1977). Kinetics of drug-receptor interaction. InKinetics of Drug Action (van Rossum, J. M., Ed.), Springer-Verlag, Berlin, pp. 357–411.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • N. Traverse Slater
    • 1
  • David O. Carpenter
    • 1
  1. 1.Wadsworth Center for Laboratories and ResearchNew York State Department of HealthAlbanyUSA

Personalised recommendations