Advertisement

Foundations of Physics

, Volume 22, Issue 8, pp 1041–1077 | Cite as

Quantized fiber dynamics for extended elementary objects involving gravitation

  • W. Drechsler
Article
  • 30 Downloads

Abstract

The geometro-stochastic quantization of a gauge theory for extended objects based on the (4, 1)-de Sitter group is used for the description of quantized matter in interaction with gravitation. In this context a Hilbert bundle ℋ over curved space-time B is introduced, possessing the standard fiber ℋ\(_{\bar \eta }^{(\rho )} \), being a resolution kernel Hilbert space (with resolution generator\(\tilde \eta \)and generalized coherent state basis) carrying a spin-zero phase space representation of G=SO(4, 1) belonging to the principal series of unitary irreducible representations determined by the parameter ρ. The bundle ℋ, associated to the de Sitter frame bundle P(B, G), provides a geometric arena with built-in fundamental length parameter R (taken to be of the order of 10−13 cm characterizing hadron physics) yielding, in the presence of gravitation, a quantum kinematical framework for the geometro-stochastic description of spinless matter described in terms of generalized quantum mechanical wave functions, Ψ x ρ (ξ, ζ), defined on #x210B;. By going over to a nonlinear realization of the de Sitter group with the help of a section ξ(x) on the soldered bundle E, associated to P, with homogeneous fiber V′4⋍G/H, one is able to recover gravitation in a de Sitter gauge invariant manner as a gauge theory related to the Lorentz subgroup H of G. ξ(x) plays the dual role of a symmetry-reducing and an extension field. After introducing covariant bilinear source currents in the fields Ψ x ρ (ξ, ζ) and their adjoints determined by G-invariant integration over the local fibers in ℋ, a quantum fiber dynamical (QFD) framework is set up for the dynamics at small distances in B determining the geometric quantities beyond the classical metric of Einstein's theory through a set of current-curvature field equations representing the source equations for axial vector torsion and the de Sitter boost contributions to the bundle connection (the latter defining the soldering forms of the Cartan connection in P(B, G) in the nonlinear gauge). The presented bundle framework yields a theory for quantized material objects in interaction with gravitation, the long-range metrical part of which remains classical.

Keywords

Gauge Theory Unitary Irreducible Representation Cartan Connection Generalize Coherent State Phase Space Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. C. Hegerfeldt,Phys. Rev. D 10, 3320 (1974);Phys. Rev. Lett. 54, 2395 (1985);Nucl. Phys. B (Proc. Suppl.) 6, 231 (1989).Google Scholar
  2. 2.
    E. Prugovečki,Stochastic Quantum Mechanics and Quantum Spacetime (Reidel, Dordrecht, 1986).Google Scholar
  3. 3.
    W. Drechsler and E. Prugovečki,Found. Phys. 21, 513 (1991), referred to as [I].Google Scholar
  4. 4.
    W. Drechsler,Class. Quantum Gravit. 6, 623 (1989), referred to as [II];Found. Phys. 19, 1479 (1989).Google Scholar
  5. 5.
    Ch. Ehresmann,Colloque de Topologie, Bruxelles, 1950, p. 29.Google Scholar
  6. 6.
    S. Kobayashi,Can. J. Math. 8, 145 (1956).Google Scholar
  7. 7.
    W. Drechsler,Fortschr. Phys. 38, 63 (1990).Google Scholar
  8. 8.
    W. Drechsler,J. Math. Phys. 26, 41 (1985).Google Scholar
  9. 9.
    W. Drechsler,Ann. Inst. H. Poincaré 37, 155 (1982).Google Scholar
  10. 10.
    E. Prugovečki,Nuovo Cimento A 97, 597, 837 (1987);100, 827 (1988);101, 853 (1989);102, 881 (1989).Google Scholar
  11. 11.
    E. Cartan,Ann. Ec. Norm. Sup. 40, 325 (1923);41, 1 (1924).Google Scholar
  12. 12.
    T. E. B. Kibble,J. Math. Phys. 2, 212 (1961).Google Scholar
  13. 13.
    K. Hayashi and A. Bregman,Ann. Phys. (N.Y.) 75, 562 (1973).Google Scholar
  14. 14.
    R. Penrose,Proc. R. Soc. London 284, 159 (1965).Google Scholar
  15. 15.
    W. Drechsler and R. Sasaki,Nuovo Cimento A 46, 527 (1978).Google Scholar
  16. 16.
    W. Drechsler and W. Thacker,Class. Quantum Gravit. 4, 291 (1987).Google Scholar
  17. 17.
    S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. I (Interscience, New York, 1963).Google Scholar
  18. 18.
    R. M. Wald,General Relativity (University of Chicago Press, Chicago, 1984).Google Scholar
  19. 19.
    E. Prugovečki,Quantum Geometry (Kluwer Academic, Dordrecht, 1992).Google Scholar
  20. 20.
    H.-H. von Borzeszkowski and H.-J. Treder,The Meaning of Quantum Gravity (Reidel, Dordrecht, 1988).Google Scholar
  21. 21.
    W. Drechsler,Gen. Relativ. Gravit. 15, 703 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • W. Drechsler
    • 1
  1. 1.Max-Planck-Institut für Physik, Werner-Heisenberg-InstitutMunichGermany

Personalised recommendations