Foundations of Physics

, Volume 22, Issue 8, pp 995–1010 | Cite as

Wigner trajectories of a Gaussian wave packet perturbed by a weak potential

  • Hai-Woong Lee


Trajectories along which phase-space points of the Wigner distribution function move are computed for a Gaussian wave packet moving under the influence of a weak perturbative potential. The potentials considered are a potential step, a potential barrier, and a periodic potential. Trajectories computed exhibit the complex, nonlocal nature of quantum dynamics. It is seen that quantum interference, which takes place in the time development of the wave packet, is taken care of in a simple way by the Wigner trajectory method presented here.


Distribution Function Time Development Potential Barrier Wave Packet Quantum Interference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).Google Scholar
  2. 2.
    J. D. Doll,J. Chem. Phys. 81, 3536 (1984).Google Scholar
  3. 3.
    D. Bohm,Phys. Rev. 85, 166, 180 (1952).Google Scholar
  4. 4.
    D. Bohm and B. J. Hiley,Phys. Rep. 172, 93 (1989).Google Scholar
  5. 5.
    E. J. Heller,J. Chem. Phys. 62, 1544 (1975).Google Scholar
  6. 6.
    E. Wigner,Phys. Rev. 40, 749 (1932).Google Scholar
  7. 7.
    H. W. Lee and M. O. Scully,Found. Phys. 13, 61 (1983).Google Scholar
  8. 8.
    H. W. Lee,Phys. Lett. A 146, 287 (1990).Google Scholar
  9. 9.
    H. W. Lee and M. O. Scully,J. Chem. Phys. 77, 4604 (1982).Google Scholar
  10. 10.
    H. W. Lee,Am. J. Phys. 50, 438 (1982).Google Scholar
  11. 11.
    I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products (Academic Press, New York, 1965).Google Scholar
  12. 12.
    A. Goldberg, H. M. Schey, and J. L. Schwartz,Am. J. Phys. 35, 177 (1967).Google Scholar
  13. 13.
    H. W. Lee, A. Zysnarski, and P. Kerr,Am. J. Phys. 57, 729 (1989).Google Scholar
  14. 14.
    L. Procida and H. W. Lee,Opt. Commun. 49, 201 (1984).Google Scholar
  15. 15.
    J. E. Beam,Am. J. Phys. 38, 1395 (1970).Google Scholar
  16. 16.
    H. W. Lee and M. O. Scully,J. Chem. Phys. 73, 2238 (1980).Google Scholar
  17. 17.
    R. C. Brown and E. J. Heller,J. Chem. Phys. 75, 186 (1981).Google Scholar
  18. 18.
    D. Eichenauer, N. Grün, and W. Scheid,J. Phys. B: At. Mol. Phys. 14, 3929 (1981).Google Scholar
  19. 19.
    J. C. Gray and T. G. Truhlar,J. Chem. Phys. 76, 5350 (1982).Google Scholar
  20. 20.
    M. G. Sheppard and R. B. Walker,J. Chem. Phys. 78, 7191 (1983).Google Scholar
  21. 21.
    W. Elberfeld and M. Kleber,J. Phys. B: At. Mol. Phys. 16, 3557 (1983).Google Scholar
  22. 22.
    H. W. Lee and T. F. George,J. Chem. Phys. 84, 6247 (1986).Google Scholar
  23. 23.
    N. E. Henriksen, V. Engel, and R. Schinke,J. Chem. Phys. 86, 6862 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Hai-Woong Lee
    • 1
  1. 1.Department of PhysicsKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations