Advertisement

Foundations of Physics

, Volume 22, Issue 4, pp 467–486 | Cite as

Contextual quantum process theory

  • Dick J. Hoekzema
Article

Abstract

A logically complete interpretation of quantum mechanics is given in terms of a theory of quantum processes.

Keywords

Quantum Mechanic Process Theory Quantum Process Complete Interpretation Contextual Quantum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, “Time asymmetry in the quantum process of measurement,”Phys. Rev. B 1324, 1410–1416 (1964); reprinted in Wheeler and Zurek, eds., Ref. 38.Google Scholar
  2. 2.
    D. Z. Albert, Y. Aharonov, and S. D'Amato, “Curious new statistical predictions of quantum mechanics,”Phys. Rev. Lett. 54, 5–7 (1985).Google Scholar
  3. 3.
    R. Alicki and K. Lendi,Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1987).Google Scholar
  4. 4.
    F. J. Belinfante,A Survey of Hidden-Variable Theories (Pergamon, Oxford, 1973).Google Scholar
  5. 5.
    J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,”Physics 1, 195–200 (1964).Google Scholar
  6. 6.
    J. S. Bell, “On the problem of hidden variables in quantum mechanics,”Rev. Mod. Phys. 38, 447–452 (1966).Google Scholar
  7. 7.
    H. van den Berg, D. J. Hoekzema, and H. Radder, “Accardi on quantum theory and the “fifth axiom” of probability,”Philos. Sci. 57, 149–157, 1990.Google Scholar
  8. 8.
    D. Bohm, “A suggested interpretation of the quantum theory in terms of “hidden variables,”Phys. Rev. 85, 166–179, 180–193 (1952).Google Scholar
  9. 9.
    K. A. Bowen,Model Theory for Modal Logic (Volume 127,Synthese Library) (Reidel, Dordrecht, 1979).Google Scholar
  10. 10.
    J. Bub and H. Brown, “Curious properties of quantum ensembles which have been both preselected and postselected,”Phys. Rev. Lett. 56, 2337–2340 (1986).Google Scholar
  11. 11.
    M. Çapek, “Particles or events,” in R. S. Cohen and M. W. Wartofsky, eds.,Physical Sciences and History of Physics (Reidel, Dordrecht, 1983), pp. 1–28.Google Scholar
  12. 12.
    R. M. Cooke and J. Hilgevoord, “The algebra of physical magnitudes,”Found. Phys. 10, 363–373 (1979).Google Scholar
  13. 13.
    E. B. Davies,Quantum Theory of Open Systems (Academic Press, London, 1976).Google Scholar
  14. 14.
    E. B. Davies and J. T. Lewis, “An operational approach to quantum probability,”Commun. Math. Phys. 17, 239–260 (1970).Google Scholar
  15. 15.
    B. d'Espagnat,Conceptual Foundations of Quantum Mechanics, 2nd edn. (Benjamin, Reading, Massachusetts, 1976).Google Scholar
  16. 16.
    B. C. van Fraassen, “A formal approach to the philosophy of science,” in R. G. Colodny, ed.,Paradigms and Paradoxes (University of Pittsburg Press, Pittsburgh, 1972).Google Scholar
  17. 17.
    B. C. van Fraassen, “Hidden variables and the modal interpretation of quantum theory,”Synthese 42, 155–165 (1979).Google Scholar
  18. 18.
    B. C. Fraassen, “On the extension of Beth's semantics of physical theories,”Philos. Sci. 37, 325–339 (1970).Google Scholar
  19. 19.
    B. C. van Fraassen, “The semantic approach to scientific theories,” in N. Nersessian, ed.,The Process of Science (Nijhoff, Dordrecht, 1987).Google Scholar
  20. 20.
    A. M. Gleason, “Measures on the closed subspaces of a Hilbert space,”J. Math. Mech. 6, 885–893 (1957).Google Scholar
  21. 21.
    J. Hilgevoord and J. Uffink, “Uncertainty in prediction and in inference,”Found. Phys. 21, 323–341 (1990).Google Scholar
  22. 22.
    D. J. Hoekzema, “Locality and realism in contextual theories,”Found. Phys. 17, 787–797 (1987).Google Scholar
  23. 23.
    D. J. Hoekzema, “A note on contextual quantum formalisms,” in J. Mizerski, A. Posiewnik, J. Pykacz, and M. Żukowski, eds.,Problems in Quantum Physics II: Gdańsk '89 (World Scientific, Singapore, 1989).Google Scholar
  24. 24.
    D. J. Hoekzema, “Quantum event theory, a Fokker-Tetrode version of quantum field theory,”Found. Phys. 22, 487–506 (1992).Google Scholar
  25. 25.
    D. J. Hoekzema, “The quantum labyrinth, a treatise on comparative metaphysics and quantum mechanics,” manuscript, to be published (Kluwer, Dordrecht, 1992).Google Scholar
  26. 26.
    A. Holevo,Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982).Google Scholar
  27. 27.
    J. Jauch and C. Piron,Helv. Phys. Acta 36, 829 (1963).Google Scholar
  28. 28.
    S. Kochen and E. P. Specker, “The problem of hidden variables in quantum mechanics,”J. Math. Mech. 17, 59–87 (1967).Google Scholar
  29. 29.
    K. Kraus, “General state changes in quantum mechanics,”Ann. Phys. (N. Y.) 64, 311–335 (1971).Google Scholar
  30. 30.
    K. Kraus,States, Effects and Operations (Lecture Notes in Physics) (Springer, Berlin, 1983).Google Scholar
  31. 31.
    J. M. Levy-Leblond, “Quantum mechanics, a half century later,” in J. Leite Lopes and M. Paty, eds.,Towards a Proper Quantum Theory (Reidel, Dordrecht, 1977), pp. 171–206.Google Scholar
  32. 32.
    G. Ludwig,Deutung des Begriffs “Physikalische Theorie” und axiomatische Grundlegung der Hilbertraumstruktur der Quantenmechanik durch Hauptsätze des Messens (Springer, Berlin, 1970).Google Scholar
  33. 33.
    J. von Neumann,Mathematische Grundlagen der Quanten Mechanik (Springer, Berlin, 1932); translation into English by R. T. Beyer:Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1955).Google Scholar
  34. 34.
    M. Redhead,Incompleteness, Nonlocality, and Realism (Clarendon Press, Oxford, 1987).Google Scholar
  35. 35.
    F. Selleri, ed.,Quantum Mechanics versus Local Realism: The Einstein-Podolsky-Rosen Paradox (Plenum, New York, 1988).Google Scholar
  36. 36.
    A. Shimony, “The status of hidden-variable theories,” in P. Suppes, L. Henkin, G. R. C. Moisil, and A. Joja, eds.,Logic, Methodology, and Philosophy of Science (North-Holland, Amsterdam, 1973).Google Scholar
  37. 37.
    W. F. Stinespring,Proc. Am. Math. Soc. 6, 211–216 (1955).Google Scholar
  38. 38.
    J. A. Wheeler and W. H. Zurek, eds.,Quantum Theory and Measurement (Princeton University Press, Princeton, New Jersey, 1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Dick J. Hoekzema
    • 1
  1. 1.Triple HillDriebergenThe Netherlands

Personalised recommendations