Skip to main content
Log in

Effect of hydrostatic pressure on the fluorescence of indole derivatives

  • Articles
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Effects of hydrostatic pressure on the fluorescence emission of L-tryptophan, N-acetyl-L-trytophanamide and indole were investigated. An increase in pressure ranging from 1 bar to 2.4 kbar results in reversible red-shifts of the emission of the three fluorophores. The pressure-induced redshift amounts to about 170 cm−1 at 2.4 kbar, and appears related to changes in Stokes shift of the fluorophores caused by pressure effects on the dielectric constant and/or refractive index of the medium. As the pressure range investigated here is the range commonly used in studies of protein subunit association and/or folding, these observations raise the need for caution in interpreting pressure-induced spectral shifts. The significance of these observations to pressure studies of proteins is illustrated by investigation of pressure effects on human Cu,Zn Superoxide dismutase (SOD) and azurin fromPseudomonas aeruginosa. A reversible 170 cm−1 red-shift of the emission of SOD was observed upon pressurization to 2.4 kbar. This might be interpreted as pressure-induced conformational changes of the protein. However, further studies using SOD that had been fully unfolded by guanidine hydrochloride, and fluorescence anisotropy measurements indicated that the observed red-shift was likely due to a direct effect of pressure on the fluorescence of the single tryptophan residue of SOD. Similar pressure-induced red-shifts were also observed for the buried tryptophan residue of azurin or for azurin that had been previously denatured by guanidine hydrochloride. These observations further suggest that the effective dielectric constant of the protein matrix is affected by pressure similarly to water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Weber (1992)Protein Interactions, Chapman and Hall, New York.

    Google Scholar 

  2. J. L. Silva and G. Weber (1993)Annu. Rev. Phys. Chem. 44, 89–113.

    Google Scholar 

  3. M. Gross and R. Jaenicke (1994)Eur. J. Biochem. 221, 617–630.

    Google Scholar 

  4. V. V. Mozhaev, K. Heremans, J. Frank, P. Masson, and C. Balny (1994)Trends Biotechnol. 12, 493–501.

    Google Scholar 

  5. G. Weber and H. G. Drickamer (1983)Q. Rev. Biophys. 16, 89–112.

    Google Scholar 

  6. M. R. Eftink, C. A. Ghiron, R. A. Kautz, and R. O. Fox (1991)Biochemistry 30, 1193–1199.

    Google Scholar 

  7. C. A. Royer, A. P. Hinck, S. N. Loh, K. E. Prehoda, X. Peng, J. Jonas, and J. L. Markley (1993)Biochemistry 32, 5222–5232.

    Google Scholar 

  8. G. J. A. Vidugiris, J. L. Markley, and C. A. Royer (1995)Biochemistry 34, 4909–4912.

    Google Scholar 

  9. D. Foguel and J. L. Silva (1994)Proc. Natl. Acad. Sci. USA 91, 8244–8247.

    Google Scholar 

  10. D. Foguel and G. Weber (1995)J. Biol. Chem. 270, 8244–8247.

    Google Scholar 

  11. J. R. Lakowicz (1983)Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  12. J. V. Bannister and W. H. Bannister (1984)Methods Enzymol. 105, 88–93.

    Google Scholar 

  13. A. A. Paladini and G. Weber (1981)Biochemistry 20, 2587–2593.

    Google Scholar 

  14. G. Mei, N. Rosato, N. Silva, Jr., R. Rusch, E. Gratton, I. Savini, and A. Finazzi-Agro (1992)Biochemistry 31, 7224–7230.

    Google Scholar 

  15. H. E. Parge, R. A. Hallewell, and J. A. Tainer (1992)Proc. Natl. Acad. Sci. USA 89, 6109–6113.

    Google Scholar 

  16. N. J. Silva (1993) PhD Thesis, University of Illinois at UrbanaChampaign.

  17. P. Cioni and G. B. Strambini (1994)J. Mol. Biol. 242, 291–301.

    Google Scholar 

  18. T. M. Li, J. W. Hook, III, H. G. Drickamer, and G. Weber (1976)Biochemistry 15, 3205–3211.

    Google Scholar 

  19. T. M. Li, J. W. Hook, III, H. G. Drickamer, and G. Weber (1976)Biochemistry 15, 5571–5580.

    Google Scholar 

  20. T. Coelho-Sampaio, S. T. Ferreira, G. Benaim, and A. Vieyra (1991)J. Biol. Chem. 266, 22266–22272.

    Google Scholar 

  21. N. Malaga, Y. Kaifu, and M. Koizumi (1956)Bull. Chem. Soc. Jpn. 29, 465–470.

    Google Scholar 

  22. E. Lippert (1957)Z. Electrochem. 61, 962–975.

    Google Scholar 

  23. N. G. Bakhshiev (1961)Opt. Spectrosc. 10, 379–384.

    Google Scholar 

  24. N. G. Bakhshiev (1962)Opt. Spectrosc. 12, 309–313.

    Google Scholar 

  25. N. G. Bakhshiev (1962)Opt. Spectrosc. 13, 24–29.

    Google Scholar 

  26. A. Kawski (1966)Acta Phys. Pol. 29, 507–518.

    Google Scholar 

  27. S. Kyropoulos (1926)Z. Phys. Chem. 40, 507.

    Google Scholar 

  28. P. W. Bridgman (1931)The Physics of High Pressure, G. Bell and Sons, London.

    Google Scholar 

  29. M. Sun, and P.-S. Song (1977)Photochem. Photobiol. 25, 3–9.

    Google Scholar 

  30. G. S. Chryssomallis, P. M. Torgerson, H. G. Drickamer, and G. Weber (1981)Biochemistry 20, 3955–3959.

    Google Scholar 

  31. T. G. Politis, and H. G. Drickamer (1981)J. Chem. Phys. 75, 3203–3210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louzada, P.R.F., Scaramello, M.E., Maya-Monteiro, C. et al. Effect of hydrostatic pressure on the fluorescence of indole derivatives. J Fluoresc 6, 231–236 (1996). https://doi.org/10.1007/BF00732826

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732826

Key words

Navigation