The question of corrosion cracking of metals under a constant load and slow tension

  • V. M. Kushnarenko


Constant Load Slow Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. I. Nikitin, “The corrosion cracking of metals under constant stress and constant strain rate,” Fiz.-Khim. Mekh. Mater., No. 1, 31–38 (1989).Google Scholar
  2. 2.
    R. N. Parkins, F. Matstsa, Zh. Zh. Roiela, and Zh. K. Skalli, “Methods of stress-corrosion testing,” Zashch. Met., No. 5, 539–575 (1973).Google Scholar
  3. 3.
    F. F. Lyle and E. B. Norris, “Evaluation of sulfide SCC resistance of high-strength steels by the constant strain rate method,” Corrosion — NACE,34, No. 6, 193–198 (1978).Google Scholar
  4. 4.
    K. Kasahara and A. Haruhiko, “Effect of cathodic protection conditions on the stress corrosion cracking of line pipe steels,” Tetsu to Hagane. J. Iron Steel Inst. Jpn.,69, No. 14, 1630–1637 (1983).Google Scholar
  5. 5.
    J. Von Hicking, “Dehnungsinduzierte Rißkorrosion: Spannung-Srißkorrosion oder Sekwingungsriβkorrosione,” Der Maschinenshaden,55, No. 2, 95–105 (1982).Google Scholar
  6. 6.
    D. C. Deegan and B. E. Wilde, “Stress corrosion cracking behavior of ASTM A517 grade F steel in liquid ammonia environments,” Corrosion — NACE,29, No. 8, 310–315 (1973).Google Scholar
  7. 7.
    F. De Jong Nenk, “Evaluation of the constant strain rate test method for testing stress corrosion cracking in aluminum alloys,” Corrosion — NACE,34, No. 1, 32–36 (1978).Google Scholar
  8. 8.
    G. Herbsleb, B. Preiffer, and H. Ternes, “Spannungsrißkorrosion an austenitischen Chrom-Nickel-Stahlen bei aktiver Korrosion in chloridhaltigen Elektrolyten,” Werkst. Korr.,30, No. 5, 322–340 (1979).Google Scholar
  9. 9.
    K. Kasahara and A. Haruhiko, “Effect of cathodic protection conditions on the stress corrosion cracking of line pipe steels,” Tetsu to Hagane. J. Iron Steel Inst. Jpn.,69, No. 14, 1630–1637 (1983).Google Scholar
  10. 10.
    K. Kasahara and T. Sato, “Environmental factors that influence the susceptibility of line pipe steels to external stress corrosion cracking,” Tetsu to Hagane. J. Iron Steel Inst. Jpn.,69, No. 11, 1463–1470 (1983).Google Scholar
  11. 11.
    J. C. Turn, B. E. Wilde, and C. A. Troianos, “On the sulfide stress cracking of line pipe steels,” Corrosion (USA),39, No. 9, 364–370 (1983).Google Scholar
  12. 12.
    W. Diton and P. Huiying, “Slow loading rate fracture mechanics method for stress corrosion test,” International Congress on Metal Corrosion, Toronto, June 3–7, 1984, Proceedings, Vol. 3, Ottawa (1984), pp. 573–577.Google Scholar
  13. 13.
    G. R. Hoey, R. W. Revie, and R. R. Ramsingh, “Comparison of the slow strain rate technique and the NACE TM01-77 tensile test for determining sulfide stress cracking resistance,” Mater. Perform.,26, No. 10, 42–45 (1987).Google Scholar
  14. 14.
    T. S. Bulischeck and D. Van Rooyen, “Stress corrosion cracking of alloy 600 using the constant strain rate test,” Corrosion (USA),37, No. 10, 597–607 (1981).Google Scholar
  15. 15.
    P. E. Manning and S. M. Corey, “The niche for laboratory corrosion testing,” Metal. Progr., July, 31–37 (1982).Google Scholar
  16. 16.
    B. R. Hinton and R. P. M. Procter, “The effect of strain rate and cathodic potential on the tensile ductility of X-65 pipeline steel,” Corros. Sci.,23, No. 2, 101–123 (1983).Google Scholar
  17. 17.
    W. K. Blanchard, D. A. Koss, and L. A. Heldt, “Slow strain rate stress corrosion cracking under multiaxial deformation conditions: technique and application to admiralty brass,” Corrosion (USA),40, No. 3, 101–104 (1984).Google Scholar
  18. 18.
    MR 185-86. Calculations and Tests for Strength. Methods of Tests of the Susceptibility toward Corrosion Cracking of Steels and Alloys in Liquid Media [in Russian], Vsesoyuz. Nauch.-issled. Inst. Norm. Mashinostr., Moscow (1986).Google Scholar
  19. 19.
    MR 50-54-37-88. Calculations and Tests for Strength. A Method of Corrosion Cracking Testing with a Constant Strain Rate [in Russian], Vsesoyuz. Nauch.-issled Inst. Norm. Mashinostr., Moscow (1988).Google Scholar
  20. 20.
    B. A. Kadyrbekov, V. A. Kolesnikov, and V. N. Pecherskii, “Evaluation of the corrosion cracking resistance of steels in tests with a constant strain rate,” Fiz.-khim. Mekh. Mater., No. 1, 39–42 (1989).Google Scholar
  21. 21.
    K. Nakazawa, M. Fukutomi, and Y. Kawabe, “Effect of ion-plated aluminum coating on hydrogen gas embrittlement of ultrahigh strength maraging steel,” Nihon Kindzzoku Gakkasten. J. Jpn. Inst. Met.,46, No. 12, 1163–1167 (1982).Google Scholar
  22. 22.
    L. L. Il'ichev, V. M. Kushnarenko, S. P. Pis'menyuk, and V. S. Ukhanov, “The protective properties of a titanium nitride coating in hydrogen sulfide-containing media,” Zashch. Met., No. 5, 811–813 (1986).Google Scholar
  23. 23.
    A. Frignani, G. Trabanelli, and F. Zucchi, “The use of slow strain rate technique for studying stress corrosion cracking inhibitions,” Corr. Sci.,24, No. 11, 917–927 (1984).Google Scholar
  24. 24.
    A. B. Shein and I. V. Petukhov, “The effectiveness of inhibitors in hydrogen impregnation of elastically deformable Fe + 3% Si alloy,” Zashch. Met.,22, No. 1, 158–161 (1986).Google Scholar
  25. 25.
    V. M. Kushnarenko, T. V. Kemkhadze, E. L. Rumyantseva, and V. S. Ukhanov, “Evaluation of the effectiveness of hydrogen sulfide corrosion inhibitors of steel,” ibid.,24, No. 5, 867–870 (1988).Google Scholar
  26. 26.
    RD 39.0147103-334-88. A Method of Determination of the Degree of Protection of Steels by Inhibitors from Stress-Corrosion Failure in Hydrogen Sulfide-Containing Mineralized Media [in Russian], Vsesoyuz. Nauch.-issled Inst. Sboru, Podgot, i Transp. Nefti i Nefteprod., Ufa (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • V. M. Kushnarenko
    • 1
  1. 1.Orenburg Polytechnic InstituteUSSR

Personalised recommendations