Skip to main content
Log in

Continuous quantum measurements and the action uncertainty principle

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The path-integral approach to quantum theory of continuous measurements has been developed in preceding works of the author. According to this approach the measurement amplitude determining probabilities of different outputs of the measurement can be evaluated in the form of a restricted path integral (a path integral “in finite limits”). With the help of the measurement amplitude, maximum deviation of measurement outputs from the classical one can be easily determined. The aim of the present paper is to express this variance in a simpler and transparent form of a specific uncertainty principle (called the action uncertainty principle, AUP). The most simple (but weak) form of AUP is δS≳ℏ, whereS is the action functional. It can be applied for simple derivation of the Bohr-Rosenfeld inequality for measurability of gravitational field. A stronger (and having wider application) form of AUP (for ideal measurements performed in the quantum regime) is |∫ t″ S[q]/δq(t))Δq(t)dt|≃ℏ, where the paths [q] and [Δq] stand correspondingly for the measurement output and for the measurement error. It can also be presented in symbolic form as Δ(Equation) Δ(Path) ≃ ℏ. This means that deviation of the observed (measured) motion from that obeying the classical equation of motion is reciprocally proportional to the uncertainty in a path (the latter uncertainty resulting from the measurement error). The consequence of AUP is that improving the measurement precision beyond the threshold of the quantum regime leads to decreasing information resulting from the measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Caves, inQuantum Optics, Experimental Gravity and Measurement Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York, 1983), p. 567.

    Google Scholar 

  2. V. B. Braginsky, inTopics in Theoretical and Experimental Gravitation Physics, V. De Sabbata and J. Weber, eds. (Plenum, New York, 1977), p. 105.

    Google Scholar 

  3. W. H. Zurek,Phys. Rev. D 24, 1516 (1981).

    Google Scholar 

  4. W. H. Zurek,Phys. Rev. D 26, 1862 (1982).

    Google Scholar 

  5. L. Fonda, G. C. Ghirardi, and A. Rimini,Rep. Prog. Phys. 41, 588 (1978).

    Google Scholar 

  6. C. B. Chiu, E. C. G. Sudarshan, and B. Misra,Phys. Rev. D 16, 520 (1977).

    Google Scholar 

  7. A. Peres,Am. J. Phys. 48, 931 (1980).

    Google Scholar 

  8. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland,Phys. Rev. A 41, 2295 (1990).

    Google Scholar 

  9. M. B. Mensky,Phys. Rev. D 20, 384 (1979).

    Google Scholar 

  10. M. B. Mensky,Sov. Phys.-JETP 50, 667 (1979).

    Google Scholar 

  11. M. B. Mensky, The Path Group: Measurements, Fields, Particles (Nauka, Moscow, 1983, in Russian; Japanese translation: Yosioka, Kyoto, 1988).

    Google Scholar 

  12. F. Ya. Khalili,Vestn. Mosk. Univ., Ser. 3, Phys. & Astron. 22, 37 (1981).

    Google Scholar 

  13. A. Barchielli, L. Lanz, and G. M. Prosperi,Nuovo Cimento B 72, 79 (1982).

    Google Scholar 

  14. C. M. Caves,Phys. Rev. D 33, 1643 (1986).

    Google Scholar 

  15. C. M. Caves,Phys. Rev. D 35, 1815 (1987).

    Google Scholar 

  16. V. B. Braginsky, Yu. I. Vorontsov, and F. Ya. Khalili,Zh. Eksp. Teor. Fiz. 73, 1340 (1977).

    Google Scholar 

  17. W. G. Unruh,Phys. Rev. D 19, 2888 (1979).

    Google Scholar 

  18. C. M. Caves, K. S. Thorne, R. W. P. Drever,et al., Rev. Mod. Phys. 52, 341 (1980).

    Google Scholar 

  19. G. A. Golubtsova and M. B. Mensky,Int. J. Mod. Phys. A 4, 2733 (1989).

    Google Scholar 

  20. M. B. Mensky, “Continuous quantum nondemolition measurements and measurability of electromagnetic field from path integrals: Talk at the International Workshop on Graviational Wave Signal Analysis and Processing, Amalfi, Italy, 1–5 July, 1988.

  21. M. B. Mensky,Theor. Math. Phys. 75, 357 (1988).

    Google Scholar 

  22. G. C. Ghirardi, A. Rimini, and T. Weber,Found. Phys. 18, 1 (1988).

    Google Scholar 

  23. P. A. M. Dirac,Fields and Quanta 3, 139 (1972).

    Google Scholar 

  24. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  25. R. P. Feynman,Rev. Mod. Phys. 20, 367 (1948).

    Google Scholar 

  26. I. Bloch and D. A. Burba,Phys. Rev. D 10, 3206 (1974).

    Google Scholar 

  27. M. B. Mensky,Phys. Lett., A 150, 331 (1990).

    Google Scholar 

  28. M. B. Mensky, “On quantum theory of measurements of gravitational field,” inProceedings, 3d Seminar on Quantum Gravity (Moscow, 1984) (World Scientific, Singapore, 1985), p. 188.

  29. M. B. Mensky,Ann. Phys. 45, 215 (1988).

    Google Scholar 

  30. M. B. Mensky,Theor. Math. Phys. 80, 689 (1989).

    Google Scholar 

  31. L. Rosenfeld, inEntstehung, Entwicklung und Perspectiven der Einsteinschen Gravitationstheorie, H.-J. Treder, ed., (Akademie-Verlag, Berlin, 1966).

    Google Scholar 

  32. H.-H. von Borzeszkowski,Found. Phys. 12, 633 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mensky, M.B. Continuous quantum measurements and the action uncertainty principle. Found Phys 22, 1173–1193 (1992). https://doi.org/10.1007/BF00732697

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732697

Keywords

Navigation