Glycoconjugate Journal

, Volume 11, Issue 1, pp 23–33 | Cite as

Structural analysis of novel rhamnose-branched oligosaccharides from the glycophosphosphingolipids ofLeptomonas samueli

  • Jose O. Previato
  • Robin Wait
  • Christopher Jones
  • Lucia Mendonça-Previato
Papers

Abstract

Mild alkaline hydrolysis of the glycophosphosphingolipids of the protozoanLeptomonas samueli liberated several phosphoinositol-containing oligosaccharides (PI-oligosaccharides), which were purified by high performance anion exchange chromatography. The oligosaccharides in the resulting four fractions were characterized by methylation analysis, fast atom bombardment mass spectrometry and two-dimensional nuclear magnetic resonance spectroscopy. The oligosaccharides contain the core structure Manα(1–4)GlcNα(1–6)-myo-inositol-1-OPO3, and are substituted with 2mol of 2-aminoethylphosphonate per mol of oligosaccharide. The nonreducing ends of the oligosaccharides were terminated by rhamnose branched neutral and acidic xylose-containing penta-, hexa-, hepta- and octasaccharides, of which the three most abundant were shown to have the structures:
$$\begin{gathered} \begin{array}{*{20}c} {\begin{array}{*{20}c} {\alpha Rha} & {OPO} \\ \end{array} _2 CH_2 CH_2 NH_3^ + O PO_2 CH_2 CH_2 NH_3^ + } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} | \\ 3 \\ \end{array} } & {\begin{array}{*{20}c} | \\ 6 \\ \end{array} } & {\begin{array}{*{20}c} | \\ 6 \\ \end{array} } \\ \end{array} } \\ {R - \left. 4 \right)Man\alpha \left( {1 - 2} \right)Man\alpha \left( {1 - 3} \right)Man\alpha \left( {1 - 3} \right)Man\alpha \left( {1 - 4} \right)GlcN\alpha \left( {1 - 6} \right)Ins\left( {1/2} \right) - PO_4 } \\ \end{array} \hfill \\ Where R = Xyl\beta \left( {1 - 4} \right)Xyl\beta \left( 1 \right. - {\text{ }}\left( {{\text{PI - oligosaccharide I }}} \right) \hfill \\ {\text{ }}Xyl\beta \left( {1 - 3} \right)Xyl\beta \left( {1 - 4} \right)Xyl\beta \left( 1 \right. - {\text{ }}\left( {{\text{PI - oligosaccharide II }}} \right) \hfill \\ {\text{ GlcA}}\alpha \left( {1 - 3} \right){\text{GlcA}}\alpha \left( {1 - 4} \right)Xyl\beta \left( {1 - 4} \right)Xyl\beta \left( 1 \right. - {\text{ }}\left( {{\text{PI - oligosaccharide II }}} \right) \hfill \\ \end{gathered}$$
More tentative structures are also proposed for three minor oligosaccharides.

Keywords

glycophosphosphingolipids rhamnose-branched oligosaccharide Trypanosomatidae Leptomonas samueli 

Abbreviations

DQCOSY

double quantum filtered correlated spectroscopy

FAB-MS

fast atom bombardment mass spectrometry

GC-MS

gas chromatography-mass spectrometry

GC

gas chromatography

GPI

glycosylphosphatidylinositol

HPAE

high performance anion-exchange chromatography

[M + H]+

protonated molecule

[M − H]

deprotonated molecule

NOE

nuclear Overhauser enhancement

PAD

pulsed amperometric detection

PI

phospho-inositol

RI

relative intensity

ROESY

rotating frame nuclear Overhauser enhancement spectroscopy

TOCSY

total correlation spectroscopy

AEP

2-aminoethylphosphonic acid

Glc

glucose

GlcN

glucosamine

GlcNAc

N-acetylglucosamine

GlcA

glucuronic acid

Gal

galactose

Man

mannose

Rha

rhamnose

Xyl

xylose

Ins

myo-inositol

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wallace FG (1966)Exp Parasitol 18:124–93.Google Scholar
  2. 2.
    McGhee RB, Cosgrove WB (1980)Microbiol Rev 44:140–73.Google Scholar
  3. 3.
    Ferguson MAJ, Masterson WJ, Homans SW, McConville MJ (1991)Cell Biol Intern Rep 15:991–1005.Google Scholar
  4. 4.
    Turco SJ, Descoteaux A (1992)Annu Rev Microbiol 46:65–94.Google Scholar
  5. 5.
    Ferguson MA, Williams AF (1988)Annu Rev Biochem 57:285–320.Google Scholar
  6. 6.
    McConville MJ (1991)Cell Biol Intern Rep 15:779–98.Google Scholar
  7. 7.
    Previato JO, Gorin PAJ, Mazurek M, Xavier MT, Fournet B, Wieruszesk JM, Mendonça-Previato L (1990)J Biol Chem 265:2518–26.Google Scholar
  8. 8.
    Previato JO, Mendonça-Previato L, Jones C, Wait R, Fournet B (1992)J Biol Chem 267:24279–86.Google Scholar
  9. 9.
    Palatnik CB, Previato JO, Gorin PAJ, Mendonça-Previato L (1987)Comp Biochem Physiol 86B:593–99.Google Scholar
  10. 10.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956)Anal Chem 28:350–6.Google Scholar
  11. 11.
    Sweeley CC, Bentley R, Makita M, Wells WW (1963)J Am Chem Soc 85:2497.Google Scholar
  12. 12.
    Ames BN (1966)Methods Enzymol 8:115–18.Google Scholar
  13. 13.
    Bartlett GR (1959)J Biol Chem 234:466–8.Google Scholar
  14. 14.
    Ciucanu I, Kerek F (1984)Carbohydr Res 131:209–17.Google Scholar
  15. 15.
    Parente JP, Cardon P, Leroy Y, Montreuil J, Fournet B (1985)Carbohydr Res 141:41–7.Google Scholar
  16. 16.
    Fournet B, Strecker G, Leroy Y. Montreuil J (1981)Anal Biochem 116:489–502.Google Scholar
  17. 17.
    Braunschweiler L, Ernst RR (1983)J Magn Reson 53:521–8.Google Scholar
  18. 18.
    Rance M, Sørensen OW, Bodenhausen G, Wagner G, Ernst RR, Wuthrich K (1983)Biochem Biophys Res Commun 117:479–85.Google Scholar
  19. 19.
    Piantini U, Sørensen OW, Ernst RR (1982)J Am Chem Soc 104:6800–1.Google Scholar
  20. 20.
    Bothner-By AA, Stephens RL, Lee J, Warren CD, Jeanloz RW (1984)J Am Chem Soc 106:811–13.Google Scholar
  21. 21.
    Kessler H, Griesinger C, Kerssebaum R, Wagner K, Ernst RR (1987)J Am Chem Soc 109:607–9.Google Scholar
  22. 22.
    States DJ, Haberkorn RA, Ruben DJ (1982)J Magn Reson 48:286–92.Google Scholar
  23. 23.
    Bax A, Morris G (1981)J Magn Reson 42:501–5.Google Scholar
  24. 24.
    Domon B, Costello CE (1988)Glycoconjugate J 5:397–409.Google Scholar
  25. 25.
    Bock K, Josephson S, Bundle DR (1982)J Chem Soc Perkin Trans 2:59–70.Google Scholar
  26. 26.
    Laffite C, Phuoc Du AMN, Winternitz F, Wylde R, Pratriel-Sosa F (1975)Carbohydr Res 67:91–103.Google Scholar
  27. 27.
    Carlin NIA, Lindberg AA, Bock K, Bundle DR (1984)Eur J Biochem 139:189–94.Google Scholar
  28. 28.
    Knirel YA, Zdorovenko GM, Shashkov GM, Mamyan SS, Gubanov NY, Yakoovlev LM, Solyanik LP (1988)Bioorg Khim 14:180–86.Google Scholar
  29. 29.
    Hoffmann RA, Leeflang BR, de Barse MMJ, Kamerling JP, Vliegenthart JFG (1991)Carbohydr Res 221:63–81.Google Scholar
  30. 30.
    Jansson PE, Kenne L, Widmalm G (1989)Carbohydr Res 188:169–92.Google Scholar
  31. 31.
    Kochetkov NK, Lipkind GM, Shashkov AS, Nifant'ev NE (1991)Carbohydr Res 221:145–68.Google Scholar
  32. 32.
    Hard K, van Doorn JM, Thomas-Oates JE, Kamerling JP, Van der Horst DJ (1993)Biochemistry 32:766–75.Google Scholar
  33. 33.
    Schlein Y, Schnur LF, Jacobson RL (1990)Trans R Soc Trop Med Hyg 84:353–5.Google Scholar
  34. 34.
    Davies CR, Cooper AM, Peacock C, Lane RP, Blackwell JM (1990)Parasitology 101:337–43.Google Scholar
  35. 35.
    Pimenta PF, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, Sacks DL (1992)Science 256:1812–15.Google Scholar
  36. 36.
    McConville MJ, Turco SJ, Ferguson MA, Sacks DL (1992)EMBO J 11:3593–600.Google Scholar
  37. 37.
    Galvão AB, Oliveira RL, Carvalho ALM, Veiga GP (1970)Rev Goiana Med 16:229.Google Scholar
  38. 38.
    Mendonça-Previato L, Gorin PAJ, Previato JO (1979)Biochemistry 18:149–54.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Jose O. Previato
    • 1
  • Robin Wait
    • 2
  • Christopher Jones
    • 3
  • Lucia Mendonça-Previato
    • 1
  1. 1.Departamento de Microbiologia GeralUniversidade Federal do Rio de JaneiroRio de Janeiro-RJBrasil
  2. 2.Division of PathologyPublic Health Laboratory Service Centre for Applied Microbiology and Research, Porton DownSalisburyUK
  3. 3.Laboratory of Molecular StructureNational Institute for Biological Standards and Control, South MimmsPotters BarUK

Personalised recommendations