Journal of Superconductivity

, Volume 8, Issue 2, pp 279–285 | Cite as

Heat capacity of high-temperature superconductors: Analysis within the framework of the impurity mechanism

  • I. A. Chaban


The impurity mechanism proposed earlier is used to interpret the heat properties of hightemperature superconductors. The expression for the heat-capacity jump describing its temperature and magnetic field dependences is obtained. An explanation of the dependence of the Sommerfeld constant on the stoichiometric composition is proposed.

Key words

Heat capacity high-temperature superconductivity impurity mechanism localization percolation threshold two-level systems 


  1. 1.
    M. B. Salamon,Physical Properties of High-Temperature Superconductors, (Nauka, Moscow, 1990), pp. 69–162 (in Russian).Google Scholar
  2. 2.
    S. E. Stupp and D. M. Ginsberg,Physica C 158, 299 (1989).Google Scholar
  3. 3.
    S. E. Stupp,J. Supercond. 3, 201 (1990).Google Scholar
  4. 4.
    R. A. Fisher, J. E. Gordon, and N. E. Phillips,J. Supercond. 1, 231 (1988).Google Scholar
  5. 5.
    G. Yu. Bochkova and V. A. Voloshin,Reviews on High-Temperature Superconductivity (Nauka, Moscow, 1990), Vol. 3, pp. 36–93 (in Russian).Google Scholar
  6. 6.
    M. B. Salamon, S. E. Inderhees, J. P. Rice, B. G. Pazol, D. M. Ginsberg, and N. Goldenfeld,Phys. Rev. B 38, 885 (1988).Google Scholar
  7. 7.
    V. G. Zarifis and D. H. Dauglass,Physica C 170, 46 (1990).Google Scholar
  8. 8.
    E. Bonjur, R. Calemezuk, J. Y. Henry, and A. F. Khoder,Phys. Rev. B 43, 106 (1991).Google Scholar
  9. 9.
    K. Ghiron, M. B. Salamon, B. W. Veal., A. P. Paulikas, and J. W. Downly,Phys. Rev. B 46, 5837 (1992).Google Scholar
  10. 10.
    C. Ayache, B. Barbara, E. Bonjour, R. Calemezuk, M. Couach, J. H. Henry, and J. Rossat-Mignot,Solid State Commun. 64, 247 (1987).Google Scholar
  11. 11.
    K. A. Kvavadze, D. A. Igitchanishvilli, M. M. Nadareischvilli, L. A. Tarhnishvilli, G. A. Cincadze, and M. Y. Chubaria,Sverhprovodimost, Fiz., Khim., Tekh.3, 1628 (1990) (in Russian).Google Scholar
  12. 12.
    K. Kumagai, Y. Nakamura, I. Watanabe, Y. Nakamichi, and H. Nakajima,J. Magn. Magn. Mat. 76/77, 601 (1988).Google Scholar
  13. 13.
    J. B. Torrance, Y. Tokura, A. I. Nazzal., A. Bezinge, T. C. Huang, and S. S. P. Parkin,Phys. Rev. Lett. 61, 1127 (1988).Google Scholar
  14. 14.
    M. E. Reeves, S. E. Stupp, T. A. Friedmann, F. Slakey, D. H. Ginsberg, and M. V. Klein,Phys. Rev. B 40, 4573 (1989).Google Scholar
  15. 15.
    S. P. Tokmakova and I. A. Chaban,Sverhprovodimost, Fiz., Khim., Tekh. 3, 2485 (1990) (in Russian).Google Scholar
  16. 16.
    I. A. Chaban,Opt. spektrosk. 73, 317 (1992) (in Russian).Google Scholar
  17. 17.
    I. A. Chaban,J. Supercond. 6, 351 (1993).Google Scholar
  18. 18.
    B. Golding, N. O. Birge, W. H. Haemmrle, R. J. Cava, and E. Reitman,Phys. Rev. B 36, 5606 (1987).Google Scholar
  19. 19.
    S. Hunklinger, W. Arnold, inPhysical Acoustics, P. Mason and R. N. Thurston eds. (Academic Press, New York, 1976), Vol. 12, pp. 155–215.Google Scholar
  20. 20.
    I. A. Chaban,J. Supercond. 5, 441 (1992).Google Scholar
  21. 21.
    V. L. Aksenov and S. A. Sergeenkov,Physica C 156, 18 (1988).Google Scholar
  22. 22.
    B. I. Shklovskii, A. L. Efros,Electronic Properties of Doped Superconductors (Nauka, Moscow, 1979) (in Russian).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • I. A. Chaban
    • 1
  1. 1.Acoustics InstituteMoscowRussia

Personalised recommendations