Solar Physics

, Volume 161, Issue 2, pp 365–381 | Cite as

Numerical modeling of coronal mass ejections based on various pre-event model atmospheres

  • A. H. Wang
  • S. T. Wu
  • S. T. Suess
  • G. Poletto
Article

Abstract

We examine how the initial state (pre-event corona) affects the numerical MHD simulation for a coronal mass ejection (CME). Earlier simulations based on a pre-event corona with a homogeneous density and temperature distribution at the lower boundary (i.e., solar surface) have been used to analyze the role of streamer properties in determining the characteristics of loop-like transients. The present paper extends these studies to show how a broader class of global coronal properties leads not only to different types of CMEs, but also modifies the adjacent quiet corona and/or coronal holes.

We consider four pre-event coronal cases: (1) constant boundary conditions and a polytropic gas with γ = 1.05; (2) non-constant (latitude dependent) boundary conditions and a polytropic gas with γ = 1.05; (3) constant boundary conditions with a volumetric energy source and γ = 1.67; (4) non-constant (latitude dependent) boundary conditions with a volumetric energy source and γ = 1.67. In all models, the pre-event magnetic fields separate the corona into closed field regions (streamers) and open field regions. The CME's initiation is simulated by introducing at the base of the corona, within the streamer region, a standard pressure pulse and velocity change. Boundary values are determined using MHD characteristic theory.

The simulations show how different CMEs, including loop-like transients, clouds and bright rays, might occur. There are significant new features in comparison to published results. We conclude that the pre-event corona is a crucial factor in dictating CMEs properties.

Keywords

Coronal Mass Ejection Coronal Hole Field Region Closed Field Streamer Region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burkepile, J. T. and St. Cyr, O. C.: 1993, NCAR/TN-369+STR, Boulder, CO, USAGoogle Scholar
  2. Dryer, M., Wu, S. T., Steinolfson, R. S., and Wilson, R. M.: 1979,Astrophys. J. 277, 1059.Google Scholar
  3. Gosling, J. T., Hildner, E., MacQueen, R. M., Munro, R. H., Poland, A. l., and Ross, C. L.: 1976,Solar Phys. 48, 389.Google Scholar
  4. Guo, W. P., Wang, J. F., Liang, B. X., and Wu, S. T.: 1991, in Z. Švestka, B. V. Jackson, and M. E. Machado (eds.), ‘Eruptive Solar Flares’,IAU Symp. 133, 381.Google Scholar
  5. Hildner, E.: 1977, in M. S. Sheaet al. (eds.),Studies of Travelling Interplanetary Phenomena, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  6. Howard, R. A., Sheeley, N. R., Koomen, M. J., and Michels, D. J.: 1984,Adv. Space Res. 4, 307.Google Scholar
  7. Hundhausen, A. J.: 1977,Coronal Holes and High Speed Wind Streams, Colorado Associated University Press, Boulder.Google Scholar
  8. Hundhausen, A. J., Burkepile, J. T., and St. Cyr, O. C.: 1994,J. Geophys. Res. 99, 6543.Google Scholar
  9. Hu, Y. Q. and Wu, S. T.: 1984,J. Comp. Phys. 55, 33.Google Scholar
  10. Illing, R. M. E.: 1984,Astrophys. J. 280, 399.Google Scholar
  11. Linker, J. A., Van Hoven, G., and McComos, D. J.: 1992,J. Geophys. Res. 70, 4229.Google Scholar
  12. Mikic, Z. and Linker, J. A.: 1994,Astrophys. J. 430, 898.Google Scholar
  13. Munro, R. H.: 1977,Bull. Am. Astron. Soc. 9, 371.Google Scholar
  14. Munro, R. H., Gosling, J. T., Hildner, E., MacQueen, R. M., Poland, A. I., and Ross, C. L.: 1979,Solar Phys. 61, 201.Google Scholar
  15. Nakagawa, Y. and Steinolfson, R. S.: 1976,Astrophys. J. 207, 296.Google Scholar
  16. Nakagawa, Y.. Wu, S. T., and Han, S. M.: 1978,Astrophys. J. 219, 314.Google Scholar
  17. Nakagawa, Y.. Wu, S. T., and Han, S. M.: 1981,Astrophys. J. 244, 331.Google Scholar
  18. Noci, G., Poletto, G., Suess, S. T., Wang, A. H., and Wu, S. T.: 1993,Solar Phys. 147, 55.Google Scholar
  19. Rust, D. M., Hildner, E., Dryer, M., Hansen, R. T., McClymont, A. N., McKenna-Lawlor, S. M. P., McLean, D. J., Schmahl, E., Steinolfson, R. S., Tandberg-Hanssen, E., Tousey, R., Webb, D., and Wu, S. T.: 1980, in P. A. Sturrock (ed.),Solar Flares, Colorado Associated University Press, Boulder.Google Scholar
  20. Sheeley, N. R., Jr., Howard, R. A., Koomen, M. J., and Michels, D. J.: 1980, in M. Dryer and E. Tandberg-Hanssen (eds.), ‘Solar and Interplanetary Dynamics’,IAU Symp. 91, 55.Google Scholar
  21. Sime, D. G., MacQueen, R. M., and Hundhausen, A. J.: 1984,J. Geophys. Res. 89, 2113.Google Scholar
  22. Steinolfson, R. S.: 1988,J. Geophys. Res. 93, 14261.Google Scholar
  23. Steinolfson, R. S. and Hundhausen, A. J.: 1988,J. Geophys. Res. 93, 14269 (referred to as SH).Google Scholar
  24. Steinolfson, R. S., Suess, S. T., and Wu, S. T.: 1982,Astrophys. J. 255, 730.Google Scholar
  25. Suess, S. T.: 1988,J. Geophys. Res. 93, 5437.Google Scholar
  26. Tousey, R.: 1973,Space Res. 12, 713.Google Scholar
  27. Wang, S., Hu, Y. Q., and Wu, S. T.: 1982,Scientifica Sinica 25, 12.Google Scholar
  28. Wang, A. H., Wu, S. T., Suess, S. T., and Poletto, G.: 1993,Solar Phys. 147, 55.Google Scholar
  29. Wu, S. T. and Wang, J. F.: 1987,Computer Methods Applied Mechanics Engineering 64, 267.Google Scholar
  30. Wu, S. T., Dryer, M., Nakagawa, Y., and Han, S. M.: 1978,Astrophys. J. 219, 324.Google Scholar
  31. Wu, S. T., Nakagawa, Y., Han, S. M., and Dryer, M.: 1982,Astrophys. J. 262, 369.Google Scholar
  32. Wu, S. T., Wang, S., Dryer, M., Poland, A. I., Sime, D. G., Wolfson, C. J., Orwig, L. E., and Maxwell, A.: 1983,Solar Phys. 85, 351.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • A. H. Wang
    • 1
  • S. T. Wu
    • 1
  • S. T. Suess
    • 2
  • G. Poletto
    • 3
  1. 1.Center for Space Plasma and Aeronomic ResearchUniversity of Alabama in HuntsvilleUSA
  2. 2.Space Science LaboratoryNASA/MSFCUSA
  3. 3.Observatorie Astrofisico di ArcetriFlorenceItaly

Personalised recommendations