Skip to main content
Log in

Numerical modeling of coronal mass ejections based on various pre-event model atmospheres

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We examine how the initial state (pre-event corona) affects the numerical MHD simulation for a coronal mass ejection (CME). Earlier simulations based on a pre-event corona with a homogeneous density and temperature distribution at the lower boundary (i.e., solar surface) have been used to analyze the role of streamer properties in determining the characteristics of loop-like transients. The present paper extends these studies to show how a broader class of global coronal properties leads not only to different types of CMEs, but also modifies the adjacent quiet corona and/or coronal holes.

We consider four pre-event coronal cases: (1) constant boundary conditions and a polytropic gas with γ = 1.05; (2) non-constant (latitude dependent) boundary conditions and a polytropic gas with γ = 1.05; (3) constant boundary conditions with a volumetric energy source and γ = 1.67; (4) non-constant (latitude dependent) boundary conditions with a volumetric energy source and γ = 1.67. In all models, the pre-event magnetic fields separate the corona into closed field regions (streamers) and open field regions. The CME's initiation is simulated by introducing at the base of the corona, within the streamer region, a standard pressure pulse and velocity change. Boundary values are determined using MHD characteristic theory.

The simulations show how different CMEs, including loop-like transients, clouds and bright rays, might occur. There are significant new features in comparison to published results. We conclude that the pre-event corona is a crucial factor in dictating CMEs properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burkepile, J. T. and St. Cyr, O. C.: 1993, NCAR/TN-369+STR, Boulder, CO, USA

  • Dryer, M., Wu, S. T., Steinolfson, R. S., and Wilson, R. M.: 1979,Astrophys. J. 277, 1059.

    Google Scholar 

  • Gosling, J. T., Hildner, E., MacQueen, R. M., Munro, R. H., Poland, A. l., and Ross, C. L.: 1976,Solar Phys. 48, 389.

    Google Scholar 

  • Guo, W. P., Wang, J. F., Liang, B. X., and Wu, S. T.: 1991, in Z. Švestka, B. V. Jackson, and M. E. Machado (eds.), ‘Eruptive Solar Flares’,IAU Symp. 133, 381.

    Google Scholar 

  • Hildner, E.: 1977, in M. S. Sheaet al. (eds.),Studies of Travelling Interplanetary Phenomena, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Howard, R. A., Sheeley, N. R., Koomen, M. J., and Michels, D. J.: 1984,Adv. Space Res. 4, 307.

    Google Scholar 

  • Hundhausen, A. J.: 1977,Coronal Holes and High Speed Wind Streams, Colorado Associated University Press, Boulder.

    Google Scholar 

  • Hundhausen, A. J., Burkepile, J. T., and St. Cyr, O. C.: 1994,J. Geophys. Res. 99, 6543.

    Google Scholar 

  • Hu, Y. Q. and Wu, S. T.: 1984,J. Comp. Phys. 55, 33.

    Google Scholar 

  • Illing, R. M. E.: 1984,Astrophys. J. 280, 399.

    Google Scholar 

  • Linker, J. A., Van Hoven, G., and McComos, D. J.: 1992,J. Geophys. Res. 70, 4229.

    Google Scholar 

  • Mikic, Z. and Linker, J. A.: 1994,Astrophys. J. 430, 898.

    Google Scholar 

  • Munro, R. H.: 1977,Bull. Am. Astron. Soc. 9, 371.

    Google Scholar 

  • Munro, R. H., Gosling, J. T., Hildner, E., MacQueen, R. M., Poland, A. I., and Ross, C. L.: 1979,Solar Phys. 61, 201.

    Google Scholar 

  • Nakagawa, Y. and Steinolfson, R. S.: 1976,Astrophys. J. 207, 296.

    Google Scholar 

  • Nakagawa, Y.. Wu, S. T., and Han, S. M.: 1978,Astrophys. J. 219, 314.

    Google Scholar 

  • Nakagawa, Y.. Wu, S. T., and Han, S. M.: 1981,Astrophys. J. 244, 331.

    Google Scholar 

  • Noci, G., Poletto, G., Suess, S. T., Wang, A. H., and Wu, S. T.: 1993,Solar Phys. 147, 55.

    Google Scholar 

  • Rust, D. M., Hildner, E., Dryer, M., Hansen, R. T., McClymont, A. N., McKenna-Lawlor, S. M. P., McLean, D. J., Schmahl, E., Steinolfson, R. S., Tandberg-Hanssen, E., Tousey, R., Webb, D., and Wu, S. T.: 1980, in P. A. Sturrock (ed.),Solar Flares, Colorado Associated University Press, Boulder.

    Google Scholar 

  • Sheeley, N. R., Jr., Howard, R. A., Koomen, M. J., and Michels, D. J.: 1980, in M. Dryer and E. Tandberg-Hanssen (eds.), ‘Solar and Interplanetary Dynamics’,IAU Symp. 91, 55.

    Google Scholar 

  • Sime, D. G., MacQueen, R. M., and Hundhausen, A. J.: 1984,J. Geophys. Res. 89, 2113.

    Google Scholar 

  • Steinolfson, R. S.: 1988,J. Geophys. Res. 93, 14261.

    Google Scholar 

  • Steinolfson, R. S. and Hundhausen, A. J.: 1988,J. Geophys. Res. 93, 14269 (referred to as SH).

    Google Scholar 

  • Steinolfson, R. S., Suess, S. T., and Wu, S. T.: 1982,Astrophys. J. 255, 730.

    Google Scholar 

  • Suess, S. T.: 1988,J. Geophys. Res. 93, 5437.

    Google Scholar 

  • Tousey, R.: 1973,Space Res. 12, 713.

    Google Scholar 

  • Wang, S., Hu, Y. Q., and Wu, S. T.: 1982,Scientifica Sinica 25, 12.

    Google Scholar 

  • Wang, A. H., Wu, S. T., Suess, S. T., and Poletto, G.: 1993,Solar Phys. 147, 55.

    Google Scholar 

  • Wu, S. T. and Wang, J. F.: 1987,Computer Methods Applied Mechanics Engineering 64, 267.

    Google Scholar 

  • Wu, S. T., Dryer, M., Nakagawa, Y., and Han, S. M.: 1978,Astrophys. J. 219, 324.

    Google Scholar 

  • Wu, S. T., Nakagawa, Y., Han, S. M., and Dryer, M.: 1982,Astrophys. J. 262, 369.

    Google Scholar 

  • Wu, S. T., Wang, S., Dryer, M., Poland, A. I., Sime, D. G., Wolfson, C. J., Orwig, L. E., and Maxwell, A.: 1983,Solar Phys. 85, 351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A.H., Wu, S.T., Suess, S.T. et al. Numerical modeling of coronal mass ejections based on various pre-event model atmospheres. Sol Phys 161, 365–381 (1995). https://doi.org/10.1007/BF00732075

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732075

Keywords

Navigation