Advertisement

Foundations of Physics

, Volume 13, Issue 9, pp 887–902 | Cite as

The arrow of electromagnetic time and the generalized absorber theory

  • John G. Cramer
Article

Abstract

The problem of the direction of electromagnetic time, i.e., the complete dominance of retarded electromagnetic radiation over advanced radiation in the universe, is considered in the context of a generalized form of the Wheeler-Feynman absorber theory in an open expanding universe with a singularity atT=0. It is shown that the application of a four-vector reflection boundary condition at the singularity leads to the observed dominance of retarded radiation; it also clarifies the role of advanced and retarded waves in the emission of very weakly absorbed radiation such as neutrinos.

Keywords

Radiation Boundary Condition Reflection Electromagnetic Radiation Reflection Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Wheeler and R. P. Feynman,Rev. Mod. Phys. 17, 157 (1945);Rev. Mod. Phys. 21, 425 (1949); see also the review by D. T. Pegg,Rep. Prog. Phys. 38, 1339 (1975).Google Scholar
  2. 2.
    H. Tetrode,Z. Phys. 10, 317 (1922).Google Scholar
  3. 3.
    A. D. Fokker,Z. Phys. 58, 386 (1929).Google Scholar
  4. 4.
    P. A. M. Dirac,Proc. Roy. Soc. (London) A267, 148 (1938).Google Scholar
  5. 5.
    F. Hoyle and J. V. Narlikar,Proc. Roy. Soc. A277, 1 (1964);Action at a Distance in Physics and Cosmology (W. H. Freeman and Co., San Francisco, 1974).Google Scholar
  6. 6.
    P. C. W. Davies,Proc. Cambridge Philos. Soc. 68, 751 (1970);J. Phys. A4, 836 (1971); andJ. Phys. A5, 1025 (1972).Google Scholar
  7. 7.
    J. G. Cramer,Phys. Rev. D22, 362 (1980).Google Scholar
  8. 8.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  9. 9.
    J. E. Hogarth,Proc. Roy. Soc. A267, 365 (1962).Google Scholar
  10. 10.
    P. E. Roe,Mon. Not. R. Astron. Soc. 144, 219 (1969).Google Scholar
  11. 11.
    R. Burman,Observatory 90, 240 (1971).Google Scholar
  12. 12.
    R. Burman,Observatory 91, 141 (1971).Google Scholar
  13. 13.
    P. C. W. Davies,J. Phys. A5, 1722 (1972).Google Scholar
  14. 14.
    J. V. Narlikar,Proc. Roy. Soc. A270, 553 (1962).Google Scholar
  15. 15.
    Paul L. Csonka,Phys. Rev. 180, 180 (1969).Google Scholar
  16. 16.
    R. Burman,Observatory 92, 128 (1972).Google Scholar
  17. 17.
    R. Burman,Observatory 92, 131 (1972).Google Scholar
  18. 18.
    R. Burman,Phys. Lett. 53, 17 (1975).Google Scholar
  19. 19.
    K. E. Bergkvist, inTopical Conference on Weak Interactions (CERN, Geneva, 1962), p. 91.Google Scholar
  20. 20.
    E. M. Henley (private communication).Google Scholar
  21. 21.
    T. Gold, inProceedings of the 11th Solvay Conference on Physics, Part 1 (Stoops, Brussels, 1958), p. 81.Google Scholar
  22. 22.
    P. C. W. Davies,The Physics of Time Asymmetry (University of California Press, Berkeley, 1977), Chapter 5.Google Scholar
  23. 23.
    R. B. Partridge,Nature 244, 263 (1973).Google Scholar
  24. 24.
    J. Schmidt and R. Newman,Bull. Am. Phys. Soc. 25, 581 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • John G. Cramer
    • 1
  1. 1.Department of Physics, FM-15University of WashingtonSeattle

Personalised recommendations