Journal of Fluorescence

, Volume 6, Issue 3, pp 147–157 | Cite as

Spectral properties of the prototropic forms of fluorescein in aqueous solution

  • Nectarios Klonis
  • William H. Sawyer


The commonly used fluorescent probe, fluorescein, can exist in seven prototropic forms. We have used global analysis procedures to reanalyze the absorption data of Diehl and Horchak-Morris (Talanta34, 739–741, 1987) in terms of five alternative ionization models. We identify the forms of fluorescein present in aqueous solution and the pKa of each ionisation transition. The pKa values of the neutral xanthene, carboxylic acid, and cationic xanthene groups are 6.3, 3.1–3.4, and 3.1–3.4, respectively, and the pKa value of lactonization is 2.4. As a consequence, the neutral form of fluorescein is a mixture of the lactone (70%), zwitterionic (15%), and quinoid (15%) forms. A knowledge of the forms present in solution permits the characterization of their spectral properties. It is shown that the quinoid and monoanion forms have similar absorption spectra, while the zwitterion spectrum is similar to that of the cation but blue-shifted by 3 nm. The emission spectra of the monoanion and quinoid forms are also identified and shown to be similar but not identical. A model for the excited-state reactions of fluorescein is presented.

Key words

Fluorescein ionization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Lindqvist (1960)Arkiv Kemi 16, 79–138.Google Scholar
  2. 2.
    V. Zanker and W. Peter (1958)Chem. Ber. 91, 572–580.Google Scholar
  3. 3.
    R. Sjoback, J. Nygren, and M. Kubista (1995)Spectrochim. Acta A 51, L7-L21.Google Scholar
  4. 4.
    H. Diehl (1989)Talanta 36, 413–415.Google Scholar
  5. 5.
    S.-C. Chen, H. Nakamura, and Z. Tamura (1979)Chem. Pharm. Bull. 27, 475–479.Google Scholar
  6. 6.
    M. M. Martin and L. Lindqvist (1975)J. Lumin. 10, 381–390.Google Scholar
  7. 7.
    Z. Tamura, T. Morioka, M. Maeda, and A. Tsuji (1994)Bunseki Kagaku 43, 339–346.Google Scholar
  8. 8.
    M. Rozwadowski (1961)Acta Phys. Pol. 20, 1005–1017.Google Scholar
  9. 9.
    J. Yguerabide, E. Talavera, J. M. Alvarez, and B. Quintero (1994) Photochem. Photobiol. 60, 435–441.Google Scholar
  10. 10.
    H. Diehl and N. Horchak-Morris (1987)Talanta 34, 739–741.Google Scholar
  11. 11.
    P. G. Seybold, M. Gouterman, and J. Callis (1969)Photochem. Photobiol,9, 229–242.Google Scholar
  12. 12.
    H. Leonhardt, L. Gordon, and R. Livingston (1971)J. Phys. Chem. 75, 245–249.Google Scholar
  13. 13.
    C. A. Heller, R. A. Henry, B. A. McLaughlin, and D. E. Bliss (1974)J. Chem. Eng. Data 19, 214–219.Google Scholar
  14. 14.
    L. L. Melhado, S. W. Peltz, S. P. Leytus, and W. F. Mangel (1982) J. Am. Chem. Soc. 104, 7299–7306.Google Scholar
  15. 15.
    P. M. Boets, H. Van Vreeswijk, A. Vernhaegen, J. D. Hartigh, and J. A. Van Best (1992)Exp. Eye Res. 54, 143–144.Google Scholar
  16. 16.
    W. R. Ware and B. A. Baldwin (1964)J. Chem. Phys. 40, 1703–1705.Google Scholar
  17. 17.
    E. A. Bailey and G. K. Rollefson (1953)J. Chem. Phys. 21, 1315–1322.Google Scholar
  18. 18.
    G. Weber and F. W. J. Teale (1956)Trans. Faraday Soc. 53, 646–655.Google Scholar
  19. 19.
    M. Kubista, R. Sjoback, and B. Albinsson (1993)Anal. Chem. 65, 994–998.Google Scholar
  20. 20.
    R. Lopez-Delgato, A. Tramer, and I. H. Munro (1974)Chem. Phys. 5, 72–83.Google Scholar
  21. 21.
    G. Guyot, R. Arnaud, and J. Lemaire (1975)J. Chim. Phys. 72, 647–653.Google Scholar
  22. 22.
    E. Gratton, D. M. Jameson, and R. D. Hall (1984)Annu. Rev. Biophys. Bioeng. 13, 105–124.Google Scholar
  23. 23.
    E. Gardini, S. Dellonte, L. Flamigni, and F. Bargielletri (1980)Gazz. Chim. Ital. 110, 533–537.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Nectarios Klonis
    • 1
  • William H. Sawyer
    • 1
  1. 1.Russell Grimwade School of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleAustralia

Personalised recommendations