Skip to main content
Log in

2-Naphthol-phosphatidylethanolamine: A fluorescent phospholipid analogue for excited-state proton transfer studies in membranes

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The fluorescence properties of the phospholipid derivative,N-[1-(2-naphthol)]-phosphatidylethanolamine (NAPH-PE), have been studied by steady-state and time-resolved fluorescence techniques. The new probe is a naphthol adduct of phosphatidylethanolamine. The emission spectrum of the fluorescent phospholipid depends on the pH and on the proton acceptor concentration as expected for a typical two-state excited-state proton transfer reaction. In ethanol solutions at an apparent pH of 6.7 and in the presence of acetate anion (0.14M), a biexponential decay is obtained from global analysis of the data. The lifetimes,τ 1=3.9 ns andτ 2=6.2 ns. are constant across the spectral region 350–460 nm. The decay-associated spectra and the species-associated spectra reproduce well the profiles reported for a two-state excited-state proton transfer reaction. The fluorescent phospholipid has been incorporated into dimyristoyllecithin and dipalmitoyllecithin vesicles. Although lower proton transfer is found, the reaction appears to be dependent on the gel-to-liquid-crystalline phase transition of the lipid membrane. In addition, the steady-state anisotropy of NAPH-PE measured as a function of temperature trace the phase transition of the two vesicle systems. Thus, it is shown that the physical state of the bilayer affects a reaction which takes place at the membrane surface. In the presence of acetate ions (0.3M), global analysis, performed in terms of fluorescence decay parameters, recovers preexponential coefficients that are consistent with an excited-state proton transfer reaction. The short lifetime drops from 3.9 to 0.44 ns without significant changes of the longer-lifetime component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Badley, W. G. Martin, and H. Schneider (1973)Biochemistry 12, 268–275.

    Google Scholar 

  2. J. Brunner and F. M. Richards (1980)J. Biol Chem. 255, 3319–3329.

    Google Scholar 

  3. D. K. Struck and R. E. Pagano (1980)J. Biol. Chem. 255, 5404–5410.

    Google Scholar 

  4. Y. Takagaki, R. Radhakrishnan, C. M. Gupta, and H. G. Khorana (1983)J. Biol. Chem. 258, 9128–9135.

    Google Scholar 

  5. B. K. Burnett, R. J., Robson, Y. Takagaki, R. Radhakrishnan, and H. G. Khorana (1985)Biochim. Biophys. Acta 815, 57–67.

    Google Scholar 

  6. Y. Tanaka and A. J. Schroit (1986)Biochemistry 25, 2141–2148.

    Google Scholar 

  7. J. R. Silvius, R. Leventis, P. M. Brown, and M. Zuckermann (1987)Biochemistry 26, 4279–4287.

    Google Scholar 

  8. R. Pal, Y. Barenholz, and R. R. Wagnar (1988)Biochemistry 27, 30–36.

    Google Scholar 

  9. H. J. Galla and J. Luisetti (1980)Biochim. Biophys. Acta 596, 108–117.

    Google Scholar 

  10. J. R. Wiener, R. Pal, Y. Barenholz, and R. R. Wagner (1985)Biochemistry 24, 7651–7658.

    Google Scholar 

  11. L. Davenport, J. R. Knutson, and L. Brand (1986)Biochemistry 25, 1186–1195.

    Google Scholar 

  12. D. Hoekstra (1982)Biochemistry 21, 1055–1061.

    Google Scholar 

  13. A. Weller (1961)Prog. React. Kinet. 1, 189–214.

    Google Scholar 

  14. J. F. Ireland and P. A. H. Wyatt (1976)Adv. Phys. Org. Chem. 12, 131–221.

    Google Scholar 

  15. N. M. Trieff and B. R. Sundheim (1965)J. Phys. Chem. 69, 2044–2059.

    Google Scholar 

  16. W. R. Laws and L. Brand (1979)J. Phys. Chem. 83, 795–802.

    Google Scholar 

  17. J. R. Knutson, D. G. Walbridge, and L. Brand (1982)Biochemistry 21, 4671–4679.

    Google Scholar 

  18. J. M. Beechem, M. Ameloot, and L. Brand (1985)Chem. Phys. Lett. 120, 466–472.

    Google Scholar 

  19. M. R. Loken, J. W. Hayes, J. R. Gohlke, and L. Brand (1972)Biochemistry 11, 4779–4786.

    Google Scholar 

  20. W. R. Laws, G. H. Posner, and L. Brand (1979)Arch. Biochem. Biophys. 193, 88–100.

    Google Scholar 

  21. A. Orstan, M. F. Lulka, B. Eide, P. H. Petra, and J. B. A. Ross (1986)Biochemistry 25, 2686–2692.

    Google Scholar 

  22. R. Yam, E. Nachliel, S. Kiryati, and M. Gutman (1991)Biophys. J. 59, 4–11.

    Google Scholar 

  23. E. Shimoni, Y. Tsfadia, E. Nachliel, and M. Gutman (1993)Biophys. J. 64, 472–479.

    Google Scholar 

  24. M. Gutman, A. B. Kotlyar, N. Borovok, and E. Nachliel (1993)Biochemistry 32, 2942–2946.

    Google Scholar 

  25. A. B. Kotlyar, N. Borovok, S. Kiryati, E. Nachliel, and M. Gutman (1994)Biochemistry 33, 873–879.

    Google Scholar 

  26. P. Neyroz, L. Franzoni, A. Spisni, L. Masotti, and L. Brand (1992)Chem. Phys. Lipids 61, 255–263.

    Google Scholar 

  27. C. W. F. McClare (1971)Anal. Biochem. 39, 527–532.

    Google Scholar 

  28. H. O. Hauser (1971)Biochem. Biophys. Res. Commun. 45, 1049–1055.

    Google Scholar 

  29. J. Brunner, P. Skrabal, and H. Hauser (1976)Biochim. Biophys. Acta 455, 322–331.

    Google Scholar 

  30. L. T. Mimms, G. Zampighi, Y. Nozaki, C. Tanford, and J. A. Reynolds (1981)Biochemistry 20, 833–840.

    Google Scholar 

  31. C. A. Parker and W. T. Rees (1960)Analyst (London) 85, 587–600.

    Google Scholar 

  32. R. F. Chen and R. L. Bowman (1965)Science (Washington, D.C.) 147, 729–732.

    Google Scholar 

  33. M. G. Badea and L. Brand (1979)Methods Enzymol. 75, 378–425.

    Google Scholar 

  34. J. Yguerabide (1972)Methods Enzymol. 26, 498–578.

    Google Scholar 

  35. D. V. O'Connor and D. Philips (1984)Time-Correlated Single Photon Counting, Academic Press, New York.

    Google Scholar 

  36. P. Wah, J. C. Auchet, and B. Donzel (1974)Rev. Sci. Instrum. 45, 28–32.

    Google Scholar 

  37. P. R. Bevington (1969)Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.

    Google Scholar 

  38. A. Grinvald and I. Z. Steinberg (1974)Anal. Biochem. 59, 583–598.

    Google Scholar 

  39. J. R. Knutson, J. M. Beechem, and L. Brand (1983)Chem. Phys. Lett. 102, 501–507.

    Google Scholar 

  40. J. M. Beechem, M. Ameloot, and L. Brand (1985)Anal. Instrum. 14, 379–402.

    Google Scholar 

  41. Th. Föster (1949)Z. Elecktrochem. 54, 42–46.

    Google Scholar 

  42. L. Brand and W. R. Laws (1983) inTime-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Plenum, R. B. Cundall and R. E. Dale (Eds.), New York, pp. 319–339.

  43. M. P. Andrich and J. M. Vanderkooi (1976)Biochemistry 15, 1257–1261.

    Google Scholar 

  44. A. Gafni and L. Brand (1978)Chem. Phys. Lett. 58, 346–350.

    Google Scholar 

  45. J. M. Beechem, J. R. Knutson, J. B. A. Ross, B. W. Turner, and L. Brand (1983)Biochemistry 22, 6054–6058.

    Google Scholar 

  46. B. K. Selinger and C. M. Harris (1983) in R. B. Cundall and R. E. Dale (Eds.),Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Plenum, New York, pp. 729–737.

    Google Scholar 

  47. Y. N. Antonenko, O. N. Kovbasniuk, and L. S. Yaguzhinsky (1993)Biochim. Biophys. Acta 1150, 45–50.

    Google Scholar 

  48. R. D. Pastor, R. M. Venable, and M. Karplus, (1991)Proc. Natl. Acad. Sci. USA 88, 892–896.

    Google Scholar 

  49. E. Pines, D. Huppert, and N. Agmon (1988)J. Chem. Phys. 88, 5620–5630.

    Google Scholar 

  50. D. Huppert, E. Pines, and N. Agmon (1990)J. Opt. Soc. Am. B 7, 1545–1550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neyroz, P., Franzoni, L., Menna, C. et al. 2-Naphthol-phosphatidylethanolamine: A fluorescent phospholipid analogue for excited-state proton transfer studies in membranes. J Fluoresc 6, 127–138 (1996). https://doi.org/10.1007/BF00732052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732052

Key words

Navigation