Advertisement

Journal of Fluorescence

, Volume 6, Issue 2, pp 77–82 | Cite as

Assessment of murine neuroblastoma (N1E-115) resting membrane potential by confocal microscopy

  • Miguel Hernandez
  • William S. Kisaalita
  • Mark A. Farmer
Article

Abstract

Digital imaging (confocal microscopy) and a slow potentiometric dye (tetramethylrhodamine methyl ester) were used to assess the resting membrane potential (Vm) of murine neuroblastoma cells (N1E-115). The averageVm was found to be −64.0±2.0 mV. The difference between this and the previously reported higher values was attributed to the use of glass microelectrode techniques that probably caused mechanical injury to the cell membranes: Digital imaging of N1E-115Vm was found to be sensitive, reproducible, fast, and simple.

Key words

Resting membrane potential tetramethylrhodamine methyl ester confocal microscopy neuroblastoma N1E-115 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. S. Kisaalita and J. M. Bowen (1996)Cyrotechnology (in press).Google Scholar
  2. 2.
    J. Peacock, J. Minna, P. Nelson, and M. Nirenberg (1972)Exp. Cell Res. 73, 367–377.Google Scholar
  3. 3.
    I. Spector, C. Palfrey, and U. Z. Litteauer (1975)Nature 254, 121–124.Google Scholar
  4. 4.
    I. Spector (1981) in P. G. Nelson and M. Lieberman (Eds.),Excitable Cells in Tissue Culture, Plenum Press, New York, pp. 247–274.Google Scholar
  5. 5.
    Y. Kidokore (1981) in P. G. Nelson and M. Lieberman (Eds.),Excitable Cells in Tissue Culture, Plenum Press, New York, pp. 319–336.Google Scholar
  6. 6.
    B. Ehrenberg, V. Montana, M.-D. Wei, J. P. Wuskell, and L. M. Loew (1988)Biophys. J. 53, 785–794.Google Scholar
  7. 7.
    L. M. Loew (1988)Spectroscopic Membrane Probes, CRC Press, Boca Raton, FL.Google Scholar
  8. 8.
    L. M. Loew (1993) in B. Matsumoto (Ed.),Methods in Cell Biology: Cell Biological Applications of Confocal Microscopy, Academic Press, New York, pp. 195–209.Google Scholar
  9. 9.
    R. K. Emaus, R. Grunwald, and J. J. Lemasters (1986)Biochim. Biophys. Acta 850, 436–448.Google Scholar
  10. 10.
    Y. Kimhi, C. Palfrey, I. Spector, Y. Barak, and U. Z. Littauer (1976)Proc. Natl. Acad. Sci. U.S.A. 73, 462–466.Google Scholar
  11. 11.
    H. C. Berg and S. M. Block (1984)J. Gen. Microbiol. 130, 2915–2920.Google Scholar
  12. 12.
    A. Chalazonitis and L. A. Green (1974)Brain Res. 72, 340–345.Google Scholar
  13. 13.
    K. S. Santone, G. S. Oakes, S. R. Taylor, and G. Powis (1986)Cancer Res. 46, 2659–2664.Google Scholar
  14. 14.
    C. Cosgrove and P. Cobbett (1991)Brain Res. Bull. 27, 53–58.Google Scholar
  15. 15.
    A. Hernandez and W. S. Kisaalita (1996)Toxic. In Vitro (in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Miguel Hernandez
    • 1
  • William S. Kisaalita
    • 1
  • Mark A. Farmer
    • 2
  1. 1.Biological and Agricultural Engineering Department, Driftmier Engineering CenterUniversity of GeorgiaAthens
  2. 2.Department of Cellular Biology, Center for Advanced Ultrastructural ResearchUniversity of GeorgiaAthens

Personalised recommendations