Determination of critical brittleness temperatures in crack resistance testing

  • G. P. Karzov
  • V. I. Smirnov
  • B. T. Timofeev


Brittleness Resistance Testing Crack Resistance Brittleness Temperature Critical Brittleness Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. N. Georgiev, “Comparison of different critical brittleness temperatures of low-carbon and low-alloy steels,” Zavod. Lab., No. 11, 78–80 (1981).Google Scholar
  2. 2.
    G. P. Karzov and V. I. Smirnov, “A specimen for examining the fatigue and brittle fracture resistance of fastening materials,” Zavod. Lab., No. 3, 268–272 (1979).Google Scholar
  3. 3.
    G. P. Karzov and V. I. Smirnov, “Evaluation of the failure resistance of fastening materials,” Fiz.-Khim. Mekh. Mater., No. 3, 82–85 (1981).Google Scholar
  4. 4.
    D. M. Shur and G. M. Pasternak, “A method of evaluating the transition temperature to the supercritical state in relation to the thickness of the material using fracture toughness characteristics,” Zavod. Lab., No. 7, 868–871 (1978).Google Scholar
  5. 5.
    A. Ya. Krasovskii, Yu. A. Kashtalyan, and V. N. Krasiko, “Determination of the critical temperature of transition from brittle to ductile fracture using the criterion of fulfilling the plane strain conditions,” Zavod. Lab., No. 9, 71–74 (1983).Google Scholar
  6. 6.
    E. M. Basko, “Using fracture mechanics criteria for evaluating the critical brittleness temperature,” Zavod. Lab., No. 1, 69–71 (1984).Google Scholar
  7. 7.
    V. A. Volkov, “Main results of national basic experiments in fracture mechanics of lowstrength steel,” in: Problems of Failure of Metals [in Russian], Moscow House of Scientific and Technical Propaganda, Moscow (1980), pp. 2–22.Google Scholar
  8. 8.
    M. P. Rozanov and V. I. Smirnov, “Examination of the effect of the dimensions of specimens and test temperature on the characteristics of fracture toughness of structural steels,” in: Cracking Resistance of Materials and Structural Members [in Russian], Naukova Dumka, Kiev (1980), pp. 181–187.Google Scholar
  9. 9.
    O. N. Romaniv, Fracture Toughness of Structural Steel [in Russian], Metallurgiya, Moscow (1979).Google Scholar
  10. 10.
    O. N. Romaniv, Yu. D. Petrina, and Yu. B. Zima, “Effect of structural and mechanical factors on the form of cold brittleness curves of steels,” Probl. Prochn., No. 7, 68–74 (1973).Google Scholar
  11. 11.
    H. Kobayashi, H. Nakamura, and N. Takahashi, “Evaluation of brittle fracture toughness and ductile crack growth in the transition region,” Trans. Jpn. Soc. Mech. Eng.,A52, No. 473, 143–149 (1986).Google Scholar
  12. 12.
    A. Otsuka, T. Miata, and S. U. Nishimura, “Fracture toughness evaluation of welds from COD behavior leading to fracture initiation,” in: Criteria Prevention Service Failure of Welding Structure, 3rd International Symposium, Japan Welding Society, Tokyo (1978), pp. 161–166.Google Scholar
  13. 13.
    O. N. Romaniv and A. S. Krys'kiv, “Using fracture mechanic criteria for evaluating the cold brittleness of structural steels,” Fiz.-Khim. Mekh. Mater., No. 5, 40–51 (1981).Google Scholar
  14. 14.
    O. N. Romaniv, A. S. Krys'kiv, and Yu. V. Zima, “Using fracture mechanics criteria for evaluating the cold brittleness of structural steels,” in: Reliability and Endurance of Machines and Installations, No. 6 (1984), pp. 51–58.Google Scholar
  15. 15.
    N. A. Makhutov, Brittle Fracture Resistance of Structural Members [in Russian], Mashinostroenie, Moscow (1973).Google Scholar
  16. 16.
    V. I. Smirnov, “Evaluation of the defect dimensions by the acoustic emission method on the basis of linear fracture mechanics,” Defektoskopiya, No. 2, 45–50 (1979).Google Scholar
  17. 17.
    G. Yu. Rozetsin and V. Dal', “Using fracture criteria for the results of tensile tests on large specimens,” Chern. Metall., No. 18, 27–34 (1984).Google Scholar
  18. 18.
    E. M. Morozov, “Results of discussion on determining the critical brittleness temperatures,” Zavod. Lab., No. 1, 71–72 (1984).Google Scholar
  19. 19.
    A. Ya. Krasovskii, “Critical brittleness temperatures a measure of cracking resistance of steels,” Probl. Prochn., No. 10, 89–95 (1985).Google Scholar
  20. 20.
    G. P. Karzov, V. P. Leonov, and B. T. Timofeev, Welded High-Pressure Vessels [in Russian], Mashinostroenie, Leningrad (1982).Google Scholar
  21. 21.
    O. A. Shatskaya, E. Yu. Rivkin, and A. M. Vasnin, “Brittle fracture resistance calculations of shells of nuclear reactors,” Fiz.-Khim. Mekh. Mater., No. 4, 103–106 (1983).Google Scholar
  22. 22.
    M. N. Georgiev and V. G. Kudin, “Critical brittleness temperature in relation to conditions of service failure,” Zavod. Lab., No. 6, 69–71 (1982).Google Scholar
  23. 23.
    V. I. Smirnov, V. I. Bobrov, B. T. Timofeev, and V. V. Anikovskii, “Ensuring the strength and endurance of fastening steels for VVER reactor shells,” in: Engineering, International Center of Scientific and Technical Information, Institute of Energy No. 4, Academy of Sciences of the USSR, Moscow-Budapest (1985), pp. 23–29.Google Scholar
  24. 24.
    A. Snow and B. Anger, “Low-cycle fatigue of large diameter bolts,” Trans. ASME, Series B, No. 1, 63–72 (1967).Google Scholar
  25. 25.
    V. V. Anikovskii, Yu. I. Zvezdin, V. A. Ignatov, et al., “Determination of critical brittleness temperature of steels for elements of fastening components for power plant,” Zavod. Lab., No. 12, 58–62 (1982).Google Scholar
  26. 26.
    V. I. Smirnov, “A method of determining Kc on cylindrical specimens with an edge crack,” Zavod. Lab., No. 4, 346–347 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • G. P. Karzov
  • V. I. Smirnov
  • B. T. Timofeev

There are no affiliations available

Personalised recommendations