Foundations of Physics

, Volume 19, Issue 4, pp 419–437 | Cite as

Continuous and discrete aspects of blackbody radiation

  • A. M. Cetto
  • L. de la Penã
Article

Abstract

The blackbody radiation field is studied from different points of view. The existence of zero-point fluctuations is shown to be crucial in determining the form of the thermal part of the spectrum. The notion of a continuous field is seen to be compatible with a discrete structure for its interaction: The description normally used in the quantum context does not refer to the field but to its interaction with atomic systems, which involves statistically independent elementary acts of absorption and emission. The same classical field has different effects on absorption and on emission, and these are conveniently, but not necessarily, described in terms of non-commuting operators.

Keywords

Radiation Radiation Field Atomic System Blackbody Radiation Classical Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. H. Boyer, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980).Google Scholar
  2. 2.
    L. de la Peña, inStochastic Processes Applied to Physics and Other Related Fields, B. Gómezet al., eds. (World Scientific, Singapore, 1983). Refs. 1 and 2 are general reviews on SED.Google Scholar
  3. 3.
    M. D. Crisp and E. T. Jaynes,Phys. Rev. 179, 1253 (1969); E. T. Jaynes, inCoherence and Quantum Optics, L. Mandel and E. Wolf, eds. (Plenum, New York, 1978).Google Scholar
  4. 4.
    W. E. Lamb and M. O. Scully, inPolarization, Matter and Radiation (Presses Universitaires de France, Paris, 1969).Google Scholar
  5. 5.
    L. Mandel, inProgress in Optics, Vol. XIII, E. Wolf, ed. (North-Holland, Amsterdam, 1976).Google Scholar
  6. 6.
    P. W. Milonni,Phys. Rep. 25, 1 (1976).Google Scholar
  7. 7.
    R. Loudon,Rep. Prog. Phys. 43, 913 (1980).Google Scholar
  8. 8.
    P. L. Knight and L. Allen,Concepts of Quantum Optics (Pergamon Press, New York, 1983).Google Scholar
  9. 9.
    P. W. Milonni, inThe Wave-Particle Dualism, S. Dineret al., eds. (Reidel, Dordrecht, 1984).Google Scholar
  10. 10.
    G. H. Goedecke,Found. Phys. 14, 41 (1984).Google Scholar
  11. 11.
    L. de la Peña and A. M. Cetto,J. Math. Phys. 20, 469 (1979); A. M. Cetto and L. de la Peña,Phys. Scripta (1987), in press.Google Scholar
  12. 12.
    D. Park and H. T. Epstein,Am. J. Phys. 17, 301 (1949).Google Scholar
  13. 13.
    M. Surdin, P. Braffort and A. Taroni,Nature 210, 405 (1966); M. Surdin,Ann. Inst. H. Poincaré 15A, 203 (1971).Google Scholar
  14. 14.
    T. H. Boyer,Phys. Rev. 182, 1374 (1969).Google Scholar
  15. 15.
    T. H. Boyer,Phys. Rev. 186, 1304 (1969).Google Scholar
  16. 16.
    T. H. Boyer,Phys. Rev. D27, 2906 (1983);29, 1096 (1984).Google Scholar
  17. 17.
    O. Theimer,Phys. Rev. D4, 1597 (1971); O. Theimer and P. R. Peterson,Phys. Rev. D 10, 3962 (1974). See also A. Kracklauer,Phys. Rev. D 14, 654 (1976).Google Scholar
  18. 18.
    J. L. Jiménez, L. de la Peña and T. A. Brody,Am. J. Phys. 48, 840 (1980).Google Scholar
  19. 19.
    T. W. Marshall,Phys. Rev. D 24, 1509 (1981).Google Scholar
  20. 20.
    J. L. Jiménez and G. del Valle,Rev. Mex. Fis. 28, 627 (1982).Google Scholar
  21. 21.
    R. Payen,J. Phys. (Paris) 45, 805 (1984).Google Scholar
  22. 22.
    See, e.g., K. Huang,Statistical Mechanics (Wiley, New York, 1963), Chap. 8.Google Scholar
  23. 23.
    A. Einstein,Ann. Phys. (Leipzig) 14, 354 (1904).Google Scholar
  24. 24.
    A. Einstein,Ann. Phys. (Leipzig) 22, 180 (1906).Google Scholar
  25. 25.
    O. Theimer,Am. J. Phys. 44, 183 (1976); E. Santos,Am. J. Phys. 44, 278 (1976).Google Scholar
  26. 26.
    See, e.g., A. Sommerfeld,Thermodynamics and Statistical Mechanics (Academic Press, New York, 1956), Chap. 2.Google Scholar
  27. 27.
    A. Pais,Rev. Mod. Phys. 51, 863 (1979).Google Scholar
  28. 28.
    L. Mandel,Proc. Phys. Soc. 74, 233 (1959); inProgress in Optics, Vol. II, E. Wolf, ed. (North-Holland, Amsterdam, 1963); L. Mandel, E. C. G. Sudarshan and E. Wolf,Proc. Phys. Soc. 84, 435 (1964).Google Scholar
  29. 29.
    D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, 1951).Google Scholar
  30. 30.
    L. de la Peña and A. M. Cetto, “New approach to stochastic electrodynamics for the explanation of quantum phenomena.” preprintIFUNAM 87-3 (1987).Google Scholar
  31. 31.
    R. J. Glauber, inQuantum Optics and Electronics, C. deWittet al., eds. (Gordon & Breach, New York, 1964).Google Scholar
  32. 32.
    R. J. Glauber, inFundamental Problems in Statistical Mechanics, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. M. Cetto
    • 1
  • L. de la Penã
    • 1
  1. 1.Instituto de Fisica, UNAMMéxico 20, D.F.

Personalised recommendations