Foundations of Physics

, Volume 20, Issue 4, pp 459–469 | Cite as

A note on a Casimir effect in a uniformly accelerated reference frame

  • Horst Beyer
  • Jürgen Nitsch


Maxwell's equations are established for the free electromagnetic field in two-dimensional space-times. In Minkowski space they are solved under the boundary conditions set by a pair of uniformly accelerated “plates.” With the help of these solutions we determine the regularized energy-momentum tensor of the canonically quantized electromagnetic field at the position of one of the “plates.” Thereby (as a new result) we arrive at a Casimir effect in an accelerated reference frame.


Boundary Condition Reference Frame Electromagnetic Field Minkowski Space Casimir Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. G. Unruh, “Notes on black-hole evaporation,”Phys. Rev. D 14, 870–892 (1976).Google Scholar
  2. 2.
    H. B. G. Casimir,Proc. Kon. Ned. Adad. Wetenschap. 51, 793 (1948).Google Scholar
  3. 3.
    M. J. Spaarnay, “Measurements of attractive forces between flat plates,”Physica 24, 751–764 (1958); W. Arnold, S. Hunklinger, and K. Dransfield,Phys. Rev. B 19, 6049 (1979).Google Scholar
  4. 4.
    J. Mehra, “Temperature correction to the Casimir effect,Physica 37, 145–157 (1967).Google Scholar
  5. 5.
    G. T. Moore, “Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity,J. Math. Phys. 11, 2679–2691 (1970).Google Scholar
  6. 6.
    N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).Google Scholar
  7. 7.
    B. S. De Witt, “Quantum field theory in curved spacetime,”Phys. Rep. 19, 295–357 (1975).Google Scholar
  8. 8.
    W. Thirring,Lehrbuch der mathematischen Physik, Bd. 2 (Springer, Wien, 1978).Google Scholar
  9. 9.
    Y. Matsushima,Differentiable Manifolds (Marcel Dekker, New York, 1972).Google Scholar
  10. 10.
    W. Rindler, “Kruskal space and the uniformly accelerated frame,”Am. J. Phys. 34, 1174 (1966).Google Scholar
  11. 11.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973).Google Scholar
  12. 12.
    Tse Chin Mo, “Theory on electrodynamics in media in noninertial frames and applications,”J. Math. Phys. 11, 2589–2610 (1970).Google Scholar
  13. 13.
    F. John,Partial Differential Equations, 3rd edn. (Springer, New York, 1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Horst Beyer
    • 1
  • Jürgen Nitsch
    • 2
  1. 1.Universität der Bundeswehr Hamburg, Fachbereich MaschinenbauHamburg 70Federal Republic of Germany
  2. 2.Kirtland Air Force Laboratory

Personalised recommendations