Foundations of Physics

, Volume 20, Issue 3, pp 283–307 | Cite as

Fundamental manifestations of symmetry in physics

  • Joe Rosen
Article

Abstract

Five fundamental manifestations of symmetry in physics—reproducibility as symmetry, predictability as symmetry, symmetry of evolution of isolated physical systems, symmetry of states of physical systems, and gauge symmetry—are investigated for their essential meaning and physical significance. The approach is conceptual, to the complete exclusion of mathematical formalism.

Keywords

Physical System Mathematical Formalism Gauge Symmetry Physical Significance Complete Exclusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Rosen,A Symmetry Primer for Scientists (Wiley, New York, 1983).Google Scholar
  2. 2.
    J. Rosen,Symmetry Discovered: Concepts and Applications in Nature and Science (Cambridge University Press, Cambridge, 1975), Chap. 4.Google Scholar
  3. 3.
    W. B. Jensen, “Classification, symmetry and the periodic table,” Comput. Math. Appl.128, 487–510 (1986), reprinted inSymmetry, Unifying Human Understanding, I. Hargittai, ed. (Pergamon, New York, 1986), pp. 487–510.Google Scholar
  4. 4.
    J. N. Shive and R. L. Weber,Similarities in Physics (Wiley, New York, 1982).Google Scholar
  5. 5.
    J. Rosen, “The anthropic principle,”Am. J. Phys. 53, 335–339 (1985).Google Scholar
  6. 6.
    J. Rosen, “The anthropic principle II,”Am. J. Phys. 56, 415–419 (1988).Google Scholar
  7. 7.
    J. Rosen, “Symmetry at the foundations of science,” Comput. Math. Appl.17, 13–15 (1989), reprinted inSymmetry 2, Unifying Human Understanding, I. Hargittai, ed. (Pergamon, New York, 1989), pp. 13–15.Google Scholar
  8. 8.
    J. Rosen, “Symmetry in the structure of science,” Proc. 1st Interdisciplinary Symposium on the Symmetry of Structure, Budapest, 1989.Google Scholar
  9. 9.
    R. M. F. Houtappel, H. Van Dam, and E. P. Wigner, “The conceptual basis and use of the geometric invariance principles,”Rev. Mod. Phys. 37, 595–632 (1965).Google Scholar
  10. 10.
    J. Rosen and Y. Freundlich, “Symmetry and conservation,”Am. J. Phys. 46, 1030–1041 (1978), reprinted inSymmetry in Physics, J. Rosen, ed. (American Association of Physics Teachers, Stony Brook, 1982), pp. 135–146; note the sequel, J. Rosen, “Symmetry and conservation: Inverse Noether's theorem and general formalism,”J. Phys. A 13, 803–813 (1980).Google Scholar
  11. 11.
    J. Rosen, “Extended Mach principle,”Am. J. Phys. 49, 258–264 (1981).Google Scholar
  12. 12.
    J. Rosen,A Symmetry Primer for Scientists (Wiley, New York, 1983), Chap. 6.Google Scholar
  13. 13.
    J. Rosen,A Symmetry Primer for Scientists (Wiley, New York, 1983), Chap. 5.Google Scholar
  14. 14.
    I. J. R. Aitchison and A. J. G. Hey,Gauge Theories in Particle Physics (Hilger, Bristol, 1982).Google Scholar
  15. 15.
    D. Griffiths,Introduction to Elementary Particles (Wiley, New York, 1987), Chap. 11.Google Scholar
  16. 16.
    R. Mills, “Gauge fields,”Am. J. Phys. 57, 493–507 (1989).Google Scholar
  17. 17.
    M. Carmeli,Classical Fields: General Relativity and Gauge Theory (Wiley, New York, 1982).Google Scholar
  18. 18.
    H. Poincaré,Science and Hypothesis (Dover, New York, 1952), Chap. 4.Google Scholar
  19. 19.
    H. Sokolik and J. Rosen, “Algebraic interpretation of the Yang-Mills field,”Gen. Relativ. Gravit. 14, 707–711 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Joe Rosen
    • 1
  1. 1.School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact SciencesTel-Avin UniversityTel-AvivIsrael

Personalised recommendations