Foundations of Physics

, Volume 20, Issue 3, pp 255–281 | Cite as

Nonideal quantum measurements

  • Hans Martens
  • Willem M. de Muynck
Article

Abstract

A partial ordering in the class of observables (∼ positive operator-valued measures, introduced by Davies and by Ludwig) is explored. The ordering is interpreted as a form of nonideality, and it allows one to compare ideal and nonideal versions of the same observable. Optimality is defined as maximality in the sense of the ordering. The framework gives a generalization of the usual (implicit) definition of self-adjoint operators as optimal observables (von Neumann), but it can, in contrast to this latter definition, be justified operationally. The nonideality notion is compared to other quantum estimation theoretic methods. Measures for the amount of nonideality are derived from information theory.

Keywords

Information Theory Theoretic Method Quantum Measurement Quantum Estimation Optimal Observable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Allcock,Ann. Phys. (N.Y.) 53, 311 (1969).Google Scholar
  2. 2.
    K. L. Chung,Markov Chains with Stationary Transition Probabilities, 2nd edn. Springer, Berlin 1967).Google Scholar
  3. 3.
    E. Davies,J. Funct. Anal. 6, 318 (1970).Google Scholar
  4. 4.
    E. Davies,Quantum Theory of Open Systems (Academic, London, 1976).Google Scholar
  5. 5.
    E. Davies and J. Lewis,Commun. Math. Phys. 17, 239 (1969).Google Scholar
  6. 6.
    P. Dirac,The Principles of Quantum Mechanics (Clarendon, Oxford, 1930).Google Scholar
  7. 7.
    C. Helstrom,Quantum Detection and Estimation Theory (Academic, New York, 1976).Google Scholar
  8. 8.
    A. Holevo,Trans. Mosc. Math. Soc. 26, 133 (1972).Google Scholar
  9. 9.
    A. Holevo,Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982).Google Scholar
  10. 10.
    G. Jameson,Ordered Linear Spaces (Lecture Notes in Mathematics, Vol. 141) (Springer, New York, 1970).Google Scholar
  11. 11.
    P. Kelly and M. Weiss,Geometry and Convexity (Wiley, New York, 1979).Google Scholar
  12. 12.
    P. Kruszynski and W. de Muynck,J. Math. Phys. 28, 1761 (1987).Google Scholar
  13. 13.
    R. Loudon,Quantum Theory of Light, 2nd edn. (Clarendon, Oxford, 1983).Google Scholar
  14. 14.
    G. Ludwig,Foundations of Quantum Mechanics, Vol. I (Springer, Berlin, 1983).Google Scholar
  15. 15.
    H. Martens and W. de Muynck, “The inaccuracy principle,”Found. Phys. 20, 357 (1990).Google Scholar
  16. 16.
    R. McEliece,The Theory of Information and Coding (Addison-Wesley, London, 1977).Google Scholar
  17. 17.
    W. de Muynck and J. Koelman,Phys. Lett. A 98, 1 (1983).Google Scholar
  18. 18.
    J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, New York, 1932, 1982).Google Scholar
  19. 19.
    J. Ortega,Matrix theory (Plenum, New York, 1987).Google Scholar
  20. 20.
    E. Prugovečki,J. Phys. A 10, 543 (1977).Google Scholar
  21. 21.
    E. Prugovečki,Stochastic Quantum Mechanics and Quantum Spacetime. (Reidel, Dordrecht, 1984).Google Scholar
  22. 22.
    J. Schwinger,Proc. Natl. Acad. Sci. USA 46, 570 (1960).Google Scholar
  23. 23.
    F. Schroeck,Int. J. Theor. Phys. 28, 247 (1989).Google Scholar
  24. 24.
    C. Shannon,Bell Syst. Tech. J. 27, 379 (1948).Google Scholar
  25. 25.
    C. Shannon,Inform. Control 1, 390 (1958).Google Scholar
  26. 26.
    J. Uffink and J. Hilgevoord,Physica B 151, 309 (1988).Google Scholar
  27. 27.
    W. Wootters,Phys. Rev. D 19, 473 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Hans Martens
    • 1
  • Willem M. de Muynck
    • 1
  1. 1.Department of Theoretical PhysicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations