Skip to main content
Log in

Expression of neolactoglycolipids: sialosyl-, disialosyl-,O-acetyldisialosyl- and fucosyl- derivatives of neolactotetraosyl ceramide and neolactohexaosyl ceramide in the developing cerebral cortex and cerebellum

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The following neolacto glycolipids were identified and their developmental expression was studied in the rat cerebral cortex and cerebellum: Fucα1-3IIInLcOse4Cer,Fucα1-3VnLcOse6Cer and (Fuc)2α1-3III,3VnLcOse6Cer, as well as acidic glycolipids, NeuAcα2-3IVnLcOse4Cer [nLM1], (NeuAc)2α2-3IVnLcOse4Cer [nLD1],O-acetyl (NeuAc)2α2-3IVnLcOse4Cer [OAc-nLD1] and their higher neolactosaminyl homologues NeuAcα2-3VInLcOse6Cer [nHM1] and (NeuAc)2α2-3VInLcOse6Cer [nHD1]. These glycolipids were expressed in the cerebral cortex only during embryonic stages and disappeared postnatally. This loss was ascribed to the down regulation of the synthesis of the key precursor LcOse3Cer which is synthesized by the enzyme lactosylceramide:N-acetylglucosaminyl transferase. On the other hand in the cerebellum, these glycolipids increased with postnatal development due to increasing availability of LcOse3Cer. In the cerebellum, only nLM1 and fucosyl-neolactoglycolipids declined after postnatal day 10–15, perhaps due to regulation by other glycosyltransferases. Also, in the cerebellum, nLD1 and nHD1 were shown to be specifically associated with Purkinje cells and their dendrites in the molecular layer and with their axon terminals in the deep cerebellar nuclei, similar to other neolactoglycolipids shown previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chou DKH, Ilyas AA, Evans JE, Costello C, Quarles RH, Jungalwala FB (1986)J Biol Chem 261: 11717–25.

    Google Scholar 

  2. Schwarting GA, Jungalwala FB, Chou DKH, Boyer AM, Yamamoto M (1987)Dev Biol 120: 65–76.

    Google Scholar 

  3. Yamamoto M, Boyer AM, Schwarting GA (1985)Proc Natl Acad Sci USA 82: 3045–49.

    Google Scholar 

  4. Chou DKH, Jungalwala FB (1988)J Neurochem 50: 1655–58.

    Google Scholar 

  5. Chou DKH, Flores S, Jungalwala FB (1990)J Neurochem 54: 1589–97.

    Google Scholar 

  6. Chou DKH, Flores S, Jungalwala FB (1990)J Neurochem 54: 1598–607.

    Google Scholar 

  7. Chou DKH, Prasadarao N, Koul O, Jungalwala FB (1991)J Neurochem 57: 852–59.

    Google Scholar 

  8. Prasadarao N, Koul O, Tobet SA, Chou DKH, Jungalwala FB (1990)J Neurochem 55: 2024–30.

    Google Scholar 

  9. Svennerholm L, Rynmark BM, Vilbergsson G, Fredman P, Gottfries J, Mansson JE, Percy A (1991)J Neurochem 56: 1763–68.

    Google Scholar 

  10. Jungalwala FB (1994)Neurochem Res 19: 945–57.

    Google Scholar 

  11. Kunemund V, Jungalwala FB, Fischer G, Chou DKH, Keilhauer G, Schachner M (1988)J Cell Biol 106: 213–23.

    Google Scholar 

  12. Wernecke H, Linder J, Schachner M (1985)J Neuroimmunol 9: 115–30.

    Google Scholar 

  13. Holley JA, Yu RK (1987)Dev Neurosci 9: 105–19.

    Google Scholar 

  14. Chou DKH, Flores S, Jungalwala FB (1991)J Biol Chem 266: 17941–47.

    Google Scholar 

  15. Chou DKH, Jungalwala FB (1993)J Biol Chem 268: 21727–33.

    Google Scholar 

  16. Nayak RC, Berman AB, George KL, Eisenbarth GS, King GL (1988)J Exp Med 167: 1003–15.

    Google Scholar 

  17. Williams MA, Gross SK, Evans JE, McCluer RH (1989)J Lipid Res 29: 1613–19.

    Google Scholar 

  18. Suzuki Y, Nishi H, Hidari K, Hirabayashi Y, Matsumoto M, Kobayashi T, Watarai S, Tatsuji Y, Nakayama J, Maeda H, Katsuyama T, Kanai M, Kiso M, Hasegawa A (1991)J Biochem (Japan) 109: 354–60.

    Google Scholar 

  19. Muthing J, Egge H, Kneip B, Muhlradt PF (1987)Eur J Biochem 163: 407–16.

    Google Scholar 

  20. Young WW, Portoukalian J, Hakomori S (1981)J Biol Chem 256: 10967–72.

    Google Scholar 

  21. Chou DKH, Nolan CE, Jungalwala FB (1982)J Neurochem 39: 1547–58.

    Google Scholar 

  22. Chou DKH, Nolan CE, Jungalwala FB (1985)J Neurochem 44: 1898–912.

    Google Scholar 

  23. Thurin J, Herlyn M, Hindsgaul O, Stromberg N, Karlsson KA, Elder D, Steplewski Z, Koprowski H (1985)J Biol Chem 260: 14556–63.

    Google Scholar 

  24. Schwarting GA, Williams MA, Evans JE, McCluer RH (1989)Glycoconjugate J 6: 293–302.

    Google Scholar 

  25. Hakomori S (1983) InSphingolipid Biochemistry (Kanfer JN, Hakomori S, eds) pp. 1–166. New York: Plenum Press.

    Google Scholar 

  26. Li YT, Mansson JE, Vanier MT, Svennerholm L (1973)J Biol Chem 248: 2634–36.

    Google Scholar 

  27. Vanier MT, Mansson JE, Svennerholm L (1980)FEBS Lett 112: 70–74.

    Google Scholar 

  28. Fredman P, von Holst H, Collins VP, Dellheden B, Svennerholm L (1993)J Neurochem 60: 99–105.

    Google Scholar 

  29. Johnstone SR, Stallcup WB (1988)J Neurochem 51: 1655–57.

    Google Scholar 

  30. Constantine-Paton M, Blum AS, Mendez-Ostero R, Barnstable CJ (1986)Nature (London) 324: 459–62.

    Google Scholar 

  31. Leclerc N, Schwarting GA, Herrup K, Hawkes R, Yamamoto M (1992)Proc Natl Acad Sci USA 89: 5006–10.

    Google Scholar 

  32. Kotani M, Kawashima I, Ozawa H, Ogura K, Ishizuka I, Terashima T, Tai T (1994)Glycobiology 4: 855–65.

    Google Scholar 

  33. Varki A, Hooshmund F, Diaz S, Varki N, Hedrick S (1991)Cell 65: 65–74.

    Google Scholar 

  34. Edwards MA, Leclere N, Crandall J, Yamamoto M (1994)Anat Embryol 190: 417–28.

    Google Scholar 

  35. Edwards MA, Crandall J, Leclerc N, Yamamoto M (1994)Neurosci Res 19: 167–74.

    Google Scholar 

  36. Yamamoto M, Schwarting GA, Crandall JE (1994)Brain Res 662: 223–32.

    Google Scholar 

  37. Hakomori S (1992)Histochem J 24: 771–76.

    Google Scholar 

  38. Marani E, Mai JK (1992)Histochem J 24: 852–68.

    Google Scholar 

  39. Schonlau CH, Mai JK (1995)Eur J Morphol 33: 119–28.

    Google Scholar 

  40. Solter D, Knowles BB (1978)Proc Natl Acad Sci USA 75: 5565–69.

    Google Scholar 

  41. Ko AI, Drager UC, Harn DA (1990)Proc Natl Acad Sci USA 87: 4159–63.

    Google Scholar 

  42. Allendoerfer KL, Patterson PH (1994)Soc Neurosci Abst 20: 293.

    Google Scholar 

  43. Nair SM, Prasadarao N, Tobet SA, Jungalwala FB (1993)J Comp Neurol 332: 282–92.

    Google Scholar 

  44. Chou DKH, Jungalwala FBJ Biol Chem (submitted).

  45. Prasadarao N, Tobet SA, Jungalwala FB (1990)J Histochem Cytochem 38: 1193–200.

    Google Scholar 

  46. Reynolds R, Wilkin GP (1988)J Neurosci Res 20: 311–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, D.K.H., Suzuki, Y. & Jungalwala, F.B. Expression of neolactoglycolipids: sialosyl-, disialosyl-,O-acetyldisialosyl- and fucosyl- derivatives of neolactotetraosyl ceramide and neolactohexaosyl ceramide in the developing cerebral cortex and cerebellum. Glycoconjugate J 13, 295–305 (1996). https://doi.org/10.1007/BF00731504

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731504

Keywords

Navigation