Skip to main content
Log in

Influence of phospholipid chain length on verotoxin/globotriaosyl ceramide binding in model membranes: comparison of a supported bilayer film and liposomes

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The importance of the surrounding lipid environment on the availability of glycolipid carbohydrate for ligand binding was demonstrated by studying the influence of phosphatidylcholine fatty acid chain length on binding of verotoxins (VT1 and VT2c) to their specific cell surface receptor, globotriaosylceramide (Gb3) in the presence of auxiliary lipids both in a microtitre plate surface bilayer film and in a liposome membrane model system. In the microtitre assay, both VT1 and VT2c binding to Gb3 was increased as a function of decreasing PC acyl chain length likely resulting in increased Gb3 exposure. In the liposome assay VT1 binding was similarly modulated, however the effect on VT2c binding was more complex and did not follow a simple function of increased carbohydrate exposure. Earlier work established that C22:1 and C18:1Gb3 fatty acid homologues were the preferred Gb3 receptor isoforms in the microtitre assay for VT1 and VT2c respectively. This selectivity was maintained in C16PC containing liposomes, but in C14PC liposomes, binding to C22:1Gb3 (but not C18:1Gb3) was elevated such that this Gb3 species now became the preferred receptor for both toxins. This change in verotoxin/Gb3 homologue binding selectivity in the presence of C14PC did not occur in the microtitre bilayer format. These results are consistent with our proposal that these toxins recognize different epitopes on the Gb3 oligosaccharide. We infer that relative availability of these epitopes for toxin binding in an artificial bilayer is influenced not only by the exposure due to the discrepancy between the fatty acyl chain lengths of Gb3 and PC, but by the physical mode of presentation of the bilayer structure. Such acyl chain length differences have a more marked effect in a supported bilayer film whereas only the largest discrepancies affect Gb3 receptor function in liposomes. The basis of phospholipid modulation of glycolipid carbohydrate accessibility for receptor function is likely complex and will involve phase separation, gel/liquid crystalline transition, packing and lateral mobility within the bilayer, suggesting that such parameters should be considered in the assessment of glycolipid receptor function in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O'Brien AD, Holmes RK (1987)Microbiol Rev 51: 206–20.

    Google Scholar 

  2. Konowalchuk J, Dickie N, Stavric S, Speirs JI (1978)Infect Immunol 20: 575–77.

    Google Scholar 

  3. Karmali MA (1989)Clin Microbiol Rev 2: 15–38.

    Google Scholar 

  4. Ramotar K, Boyd B, Tyrrell G, Gariepy J, Lingwood CA, Brunton J (1990)Biochem J 272: 805–11.

    Google Scholar 

  5. Head S, Karmali M, Lingwood CA (1991)J Biol Chem 266: 3617–21.

    Google Scholar 

  6. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen MC (1983)N Engl J Med 308: 681–85.

    Google Scholar 

  7. Dickie N, Speirs JI, Akhtar M, Johnson WM, Szabo RA (1989)J Clin Microbiol 27: 1973–78.

    Google Scholar 

  8. Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS, Lior H (1985)J Infect Dis 151: 775–82.

    Google Scholar 

  9. Obrig TG, Vecchio PJD, Brown JE, Moran TP, Rowland BM, Judge TK, Rothman SW (1988)Infect Immun 56: 2373–78.

    Google Scholar 

  10. Obrig T, Louise C, Lingwood C, Boyd B, Barley-Maloney L, Daniel T (1993)J Biol Chem 268: 15484–88.

    Google Scholar 

  11. Lingwood CA, Law H, Richardson S, Petric M, Brunton JL, DeGrandis S, Karmali M (1987)J Biol Chem 262: 8834–39.

    Google Scholar 

  12. Waddell T, Head S, Petric M, Cohen A, Lingwood CA (1988)Biochem Biophys Res Commun 152: 674–79.

    Google Scholar 

  13. Waddell T, Cohen A, Lingwood CA (1990)Proc Natl Acad Sci USA 87: 7898–901.

    Google Scholar 

  14. Boyd B, Tyrrell G, Maloney M, Gyles C, Brunton J, Lingwood C (1993)J Exp Med 177: 1745–53.

    Google Scholar 

  15. Zoja J, Corna D, Farina C, Sacchi G, Lingwood C, Doyles M, Padhye V, Abbate M, Remuzzi G (1992)J Lab Clin Med 120: 229–38.

    Google Scholar 

  16. Pellizzari A, Pang H, Lingwood CA (1992)Biochem 31: 1363–70.

    Google Scholar 

  17. Kiarash A, Boyd B, Lingwood CA (1994)J Biol Chem 269: 11138–46.

    Google Scholar 

  18. Boyd B, Zhiuyan Z, Magnusson G, Lingwood CA (1994)Eur J Biochem 223: 873–78.

    Google Scholar 

  19. Sandvig K, Prydz K, Ryd M, van Deurs B (1991)J Cell Biol 113: 553–62.

    Google Scholar 

  20. Khine AA, Lingwood CA (1994)J Cell Physiol 161: 319–32.

    Google Scholar 

  21. Sandvig K, Garred O, Prydz K, Kozlov J, Hansen S, van Deurs B (1992)Nature 358: 510–12.

    Google Scholar 

  22. Sandvig K, Ryd M, Garred O, Schweda E, Holm PK (1994)J Cell Biol 126: 53–64.

    Google Scholar 

  23. Igarashi K, Ogasawara T, Ito K, Yutsudo T, Takeda Y (1987)FEMS Microbiol Letts 44: 91–94.

    Google Scholar 

  24. Mangeney M, Lingwood CA, Caillou B, Taga S, Tursz T, Wiels J (1993)Cancer Res 53: 5314–19.

    Google Scholar 

  25. Cohen A, Madrid-Marina V, Estrov Z, Freedman M, Lingwood CA, Dosch H-M (1990)Int Immunol 2: 1–8.

    Google Scholar 

  26. Alving CR, Urban KA, Richards RL (1980)Biochem Biophys Acta 600: 117–25.

    Google Scholar 

  27. Kannagi R, Nudelman E, Hakomori S (1982)Proc Natl Acad Sci USA 79: 3470–74.

    Google Scholar 

  28. Kannagi R, Stroup R, Cochran NA, Urdal DL, Young Jr WW, Hakomori S-I (1983)Cancer Res 43: 4997–5005.

    Google Scholar 

  29. Crook SJ, Boggs JM, Vistnes AI, Koshy KM (1986)Biochem 25: 7488–94.

    Google Scholar 

  30. Stewart RJ, Boggs J (1990)Biochemistry 29: 3644–53.

    Google Scholar 

  31. Stewart RJ, Boggs JM (1993)Biochemistry 32: 5605–14.

    Google Scholar 

  32. Myers M, Wortman C, Freire E (1984)Biochemistry 23: 1442–48.

    Google Scholar 

  33. Nyholm P-G, Pascher I (1993)Biochemistry 32: 1225–34.

    Google Scholar 

  34. Nyholm P-G, Pascher I (1993)Int J Biol Macromol 15: 43–51.

    Google Scholar 

  35. Basta M, Karmali M, Lingwood C (1989)J Clin Microbiol 127: 1617–22.

    Google Scholar 

  36. Huang A, DeGrandis S, Friesen J, Karmali MA, Petric M, Congi R, Brunton JL (1986)J Bacteriol 166: 375–79.

    Google Scholar 

  37. Hii JH, Gyles C, Morooka T, Karmali MA, Clarke R, DeGrandis S, Brunton JL (1991)J Clin Microbiol 29: 2704–9.

    Google Scholar 

  38. Yiu SCK, Lingwood CA (1992)Anal Biochem 202: 188–92.

    Google Scholar 

  39. Hope MJ, Bally MB, Webb G, Cullis PR (1985)Biochim Biophys Acta 812: 55–65.

    Google Scholar 

  40. Maggio B, Albert J, Yu R (1988)Biochim Biophys Acta 945: 145–60.

    Google Scholar 

  41. Jacewicz M, Clausen H, Nudelman E, Donohue-Rolfe A, Keusch GT (1986)J Exp Med 163: 1391–404.

    Google Scholar 

  42. Lindberg AA, Brown JE, Strömberg N, Westling-Ryd M, Schultz JE, Karlsson K-A (1987)J Biol Chem 262: 1779–85.

    Google Scholar 

  43. Head S, Ramotar K, Lingwood CA (1990)Infect Immun 58: 1532–37.

    Google Scholar 

  44. Kiarash A, Boyd B, Lingwood CA (1994) InRecent Advances in Verocytotoxin-Producing Eshcerichia Coli Infections, (Karmali MA, Goglio AG; eds) pp. 175–187, Amsterdam, Elsevier.

    Google Scholar 

  45. Nyholm P-G, Brunton JL, Lingwood CA (1995)Int J Biol Macromol 17: 199–205.

    Google Scholar 

  46. Grant CWM, Mehlhorn IE, Florio E, Barber KR (1987)Biochim Biophys Acta 902: 169–77.

    Google Scholar 

  47. Boggs J, Koshy K, Rangaraj G (1988)Biochim Biophys Acta 938: 373–85.

    Google Scholar 

  48. Boggs JM, Koshy KM (1994)Biochem Biophys Acta 1189: 233–41.

    Google Scholar 

  49. Morrow MR, Singh D, Lu D, Grant CWM (1993)Biophys J 64: 654–64.

    Google Scholar 

  50. Maggio B (1994)Prog Biophys Molec Biol 62: 55–117.

    Google Scholar 

  51. Singh D, Jarrell HC, Barber KR, Grant CWM (1992)Biochem 31: 3662–69.

    Google Scholar 

  52. Yang J, Tamm L, Tillack T, Shao Z (1993)J Mol Biol 229: 286–90.

    Google Scholar 

  53. Prasadarao NV, Wass CA, Hacker J, Jann K, Kim KS (1993)J Biol Chem 268: 10356–63.

    Google Scholar 

  54. Pancake SJ, Holt GD, Mellouk S, Hoffman SL (1992)J Cell Biol a117: 1351–57.

    Google Scholar 

  55. Krivan HC, Ginsburg V, Roberts DD (1988)Arch Biochem Biophys 260: 493–96.

    Google Scholar 

  56. Jimenez-Lucho V, Ginsburg V, Krivan H (1990)Infect Immun 58: 2085–90.

    Google Scholar 

  57. Kyogashima M, Ginsburg V, Krivan HC (1989)Arch Biochem Biophys 270: 391–97.

    Google Scholar 

  58. Karlsson K-A, Stromberg N (1987)Methods Enzymol 138: 220–32.

    Google Scholar 

  59. Jarrell HC, Jovall PA, Giziewicz JB, Turner LA, Smith CP (1987)Biochemistry 26: 1805.

    Google Scholar 

  60. Renou J, Giziewicz J, Smith I, Jarrell H (1989)Biochemistry 28: 1804–14.

    Google Scholar 

  61. Quill H, Carlson L, Fox B, Weistein J, Schwartz R (1987)J Imunol Meth 98: 29–41.

    Google Scholar 

  62. Watts T, Brian A, Kappler J, Marrack P, McConnell H (1984)Proc Natl Acad Sci USA 81: 7564–68.

    Google Scholar 

  63. McConnell H, Watts T, Weis R, Brian A (1985)Biochim Biophys Acta 864: 95–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arab, S., Lingwood, C.A. Influence of phospholipid chain length on verotoxin/globotriaosyl ceramide binding in model membranes: comparison of a supported bilayer film and liposomes. Glycoconjugate J 13, 159–166 (1996). https://doi.org/10.1007/BF00731490

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731490

Keywords

Navigation