Skip to main content
Log in

Recognition of glycoconjugates byHelicobacter pylori: an apparently high-affinity binding of human polyglycosylceramides, a second sialic acid-based specificity

  • Papers Dedicated To Dr Sen-Itiroh Hakomori
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Helicobacter pylori has been reported to agglutinate erythrocytes and to bind to various other cells in a sialic acid-dependent way. The binding was inhibited by sialyllactose or fetuin and other sialylated glycoproteins. The specificity apparently requires bacterial growth on agar, since we found that it was lost after growth in the nutrient mixture Ham's F12. Instead, the bacteria bound with high affinity and in a sialic acid-dependent way to polyglycosylceramides of human erythrocytes, a still incompletely characterized group of complex glycolipids.

Bacteria grown in F12 medium were metabolically labelled with35S-methionine and analysed for binding to glycolipids on thin-layer chromatograms and to glycoproteins on blots after electrophoresis, with human erythrocyte glycoconjugates in focus. There was no binding to simpler gangliosides including GM3 or sialylparagloboside, or to a mixture of brain gangliosides. In contrast, polyglycosylceramides of human erythrocyte membranes bound at a pmol level. The activity was eliminated by mild acid treatment, mild periodate oxidation or sialidase hydrolysis. Erythrocyte proteins as well as a range of reference glycoproteins did not bind, except band 3, which was weakly active. However, this activity was resistant to periodate oxidation.

These results indicate a second and novel sialic acid-recognizing specificity which is expressed independently of the previously described specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. deCross AJ, Marshall BJ (1993)Am J Med Sci 306: 381–92.

    Google Scholar 

  2. Axon ATR (1993)J Antimicrob Chemother 32 Suppl A: 61–68.

    Google Scholar 

  3. Lin J-T, Wang J-T, Wang T-H, Wu M-S, Chen C-J (1993)Hepato-Gastroenterol 40: 596–99.

    Google Scholar 

  4. Wadström T (1995)Curr Opin Gastroenterol 11: 69–75.

    Google Scholar 

  5. Evans DG, Evans DJ, Graham DY (1989)Infect Immun 57: 2272–78.

    Google Scholar 

  6. Armstrong JA, Cooper M, Goodwin CS, Robinson J, Wee SH, Burton M, Burke V (1991)J Med Microbiol 34: 181–87.

    Google Scholar 

  7. Neman-Simha V, Megraud F (1988)Infect Immun 56: 3329–33.

    Google Scholar 

  8. Fauchere JL, Rosenau A, Bonneville F (1989)Gastroenterol Clin Biol 13: B59–64.

    Google Scholar 

  9. Evans DG, Evans DJ, Moulds JJ, Graham DY (1988)Infect Immun 56: 2896–906.

    Google Scholar 

  10. Emödy L, Carlsson Å, Ljungh Å, Wadström T (1988)Scand J Infect Dis 20: 353–54.

    Google Scholar 

  11. Huang J, Smyth CJ, Kennedy NP, Arbuthnott, JP, Keeling PWN (1988)FEMS Microbiol Lett 56: 109–12.

    Google Scholar 

  12. Nakazawa T, Ishibashi M, Konishi H, Takemoto T, Shigeeda M, Kochiyama T (1989)Infect Immun 57: 989–91.

    Google Scholar 

  13. Robinson J, Goodwin CS, Cooper M, Burke V, Mee BJ (1990)J Med Microbiol 33: 277–84.

    Google Scholar 

  14. Huang J, Keeling PWN, Smyth CJ (1992)J Gen Microbiol 138: 1503–13.

    Google Scholar 

  15. Slomiany BL, Piotrowski J, Samanta A, VanHorn K, Murty VLN, Slomiany A (1989)Biochem Int 19: 929–36.

    Google Scholar 

  16. Saitoh T, Natomi H, Zhao W, Okuzumi K, Sugano K, Iwamori M, Nagai Y (1991)FEBS Lett 282: 385–87.

    Google Scholar 

  17. Evans DG, Karjalainen TK, Evans DJ, Graham DY, Lee C-H (1993)J Bacteriol 175: 674–83.

    Google Scholar 

  18. Miller-Podraza H, Månsson J-E, Svennerholm L (1991)FEBS Lett 288: 212–14.

    Google Scholar 

  19. Karlsson K-A (1987)Methods Enzymol 138: 212–20.

    Google Scholar 

  20. Folch J, Lees M, Sloane Stanley GH (1957)J Biol Chem 226: 497–509.

    Google Scholar 

  21. Miller-Podraza H, Andersson C, Karlsson K-A (1993)Biochim Biophys Acta 1168: 330–39.

    Google Scholar 

  22. Koscielak J, Miller-Podraza H, Krauze R, Piasek A (1976)Eur J Biochem 71: 9–18.

    Google Scholar 

  23. Dejter-Juszynski M, Harpaz N, Flowers HM, Sharon N (1978)Eur J Biochem 83: 363–73.

    Google Scholar 

  24. Zdebska E, Krauze R, Koscielak J (1983)Carbohyd Res 120: 113–30.

    Google Scholar 

  25. Breimer M, Hansson GC, Karlsson K-A, Larson G, Leffler H, Pascher I, Pimlott W, Samuelsson BE (1980) InAdvances in Mass Spectrometry (Quayle A, ed.) Vol 8 pp. 1097–108. London: Heyden & Son.

    Google Scholar 

  26. Ito M, Yamagata T (1989)Methods Enzymol 179: 488–496.

    Google Scholar 

  27. Yang Z, Bergström J, Karlsson K-A (1994)J Biol Chem 269: 14620–24.

    Google Scholar 

  28. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956)Anal Chem 28: 350–56.

    Google Scholar 

  29. Svennerholm L (1957)Biochim Biophys Acta 24: 604–11.

    Google Scholar 

  30. Soltez V, Schalen C, Mårdh PA (1988) InProceedings of the Fourth International Workshop on Campylobacter Infections (Kaijser B, Falsen E, eds) pp. 433–36. Kungälv, Sweden: Goterna.

    Google Scholar 

  31. Karlsson K-A, Strömberg N (1987)Methods Enzymol 138: 220–32.

    Google Scholar 

  32. Lelwala-Guruge J, Ljungh Å, Wadström T (1992)APMIS 100: 908–13.

    Google Scholar 

  33. Branton D, Cohen CM, Tyler J (1981)Cell 24: 24–32.

    Google Scholar 

  34. Evans DG, Evans DJ, Jr (1995)Methods Enzymol 253: 336–60.

    Google Scholar 

  35. Järnefelt J, Rush J, Li Y-T, Laine RA (1978)J Biol Chem 253: 8006–09.

    Google Scholar 

  36. Fukuda M, Fukuda MN, Hakomori S-i (1979)J Biol Chem 254: 3700–03.

    Google Scholar 

  37. Fukuda M, Dell A, Oates JE, Fukuda MN (1984)J Biol Chem 259: 8260–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Professor S.-i. Hakomori and is paper no. 1 from our research onHelicobacter pylori.

Abbreviations: PGCs, polyglycosylceramides; TLC, thin-layer chromatography; C, chloroform; M, methanol; EI/MS, electron impact ionization mass spectrometry, SDS PAGE, sodium dodecylsulfate polyacrylamide gel electrophoresis; PBS, phosphate-buffered saline; PVDF, polyvinylidene difluoride; BSA, bovine serum albumin. The carbohydrate and glycosphingolipid nomenclatures are according to recommendations of IUPAC-IUB Commission on Biochemical Nomenclature (Lipids (1977)12: 455–68;J Biol Chem (1982)257: 3347–51 andJ Biol Chem (1987)262: 13–18).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller-Podraza, H., Milh, M.A., Bergström, J. et al. Recognition of glycoconjugates byHelicobacter pylori: an apparently high-affinity binding of human polyglycosylceramides, a second sialic acid-based specificity. Glycoconjugate J 13, 453–460 (1996). https://doi.org/10.1007/BF00731478

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731478

Keywords

Navigation