Skip to main content
Log in

Gangliosides protect human melanoma cells from ionizing radiation-induced clonogenic cell death

  • Papers Dedicated To Dr Sen-Itiroh Hakomori
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

With an experimental model of spontaneous lung metastases of melanoma developed in this laboratory, a range of sublines (variants and clones) with different metastatic potential and ganglioside expression was established from a single human melanoma cell line M4Be. Using anin vitro clonogenic assay and provided that cells were cultured for no more than five passages, variations in cellular radioresistance of M4Be and seven sublines derived from M4Be were detected. This study shows a positive correlation between the cell intrinsic radioresistance of M4Be and its seven sublines and their total ganglioside content. More precisely, the proportion of radioresistant cells in M4Be and the seven sublines correlated with the number of cells determined by flow cytometry that were positively labelled with a monoclonal antibody directed to GD3 disialoganglioside. Blocking the cellular biosynthesis of gangliosides with the inhibitor Fumonisin B1 or cleaving withVibrio cholerae neuraminidase the cell surface ganglioside-bound sialic acid in a radioresistant poorly metastatic subline increased its radiosensitivityin vitro. In contrast, enrichment of a radiosensitive metastatic subline with exogenous bovine brain GM1 increased its radioresistancein vitro. These results suggest that, in the radiation dose range important for radioprotection (0–1 Gy), membrane gangliosides radioprotect human melanoma cellsin vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grdina DJ, Basic I, Mason KA, Withers HR (1975)Rad Res 63: 483–93.

    Google Scholar 

  2. Hill HZ, Hill GJ, Miller CF, Kwong F, Purdy J (1979)Rad Res 80: 259–76.

    Google Scholar 

  3. Leith JT, Dexter DL, Dewyngaert JK, Zeman EM, Chu MY, Calabresi P, Glicksman AS (1982)Cancer Res 42: 2556–61.

    Google Scholar 

  4. Welch DR, Milas L, Tomasovic SP, Nicolson GL (1983)Cancer Res 43: 6–10.

    Google Scholar 

  5. Yang X, Darling JL, McMillan TJ, Peacock JH, Steel GG (1991)Int J Rad Oncol Biol Physics 22: 103–8.

    Google Scholar 

  6. Buronfosse A, Thomas CP, Ginestet C, Doré JF (1994)C R Acad Sci Paris 317: 1031–41.

    Google Scholar 

  7. Fidler IJ (1973)Nature 242: 148–49.

    Google Scholar 

  8. Bailly M, Doré JF (1991)Int J Cancer 49: 750–57.

    Google Scholar 

  9. Suit H, Allam A, Allalunis-Turner J, Brock W, Girinsky T, Hill S, Hunter N, Milas L, Pearcey R, Peters L, Welch DR, West C, Efird J (1994)Cancer Res 54: 1736–41.

    Google Scholar 

  10. Thomas CP, Buronfosse A, Portoukalian J, Fertil B (1995)Cancer Lett 88: 221–25.

    Google Scholar 

  11. Ramakrishnan N, McClain DE, Catravas GN (1993)Int J Rad Biol 63: 693–701.

    Google Scholar 

  12. Kono K, Tsuchida T, Kern DH, Irie R (1990)Cancer Invest 8: 161–67.

    Google Scholar 

  13. Haimovitz-Freidman A, Kan CC, Ehleiter D, Persaud RS, Mclloughlin M, Fuks Z, Kolesnick RN (1994)J Exp Med 180: 525–35.

    Google Scholar 

  14. Zebda N, Pedron S, Rebbaa A, Portoukalian J, Berthier-Vergnes O (1995)FEBS Lett 362: 161–64.

    Google Scholar 

  15. Bailly M, Bertrand S, Doré JF (1991)Int J Cancer 49: 457–66.

    Google Scholar 

  16. Portoukalian J, Carrel S, Doré JF, Rümke P (1991)Int J Cancer 49: 893–99.

    Google Scholar 

  17. Portoukalian J, Bouchon B (1986)J Chromatogr 380: 386–92.

    Google Scholar 

  18. Bouchon B, Portoukalian J, Madec AM, Orgiazzi J (1990)Biochim Biophys Acta 1051: 1–5.

    Google Scholar 

  19. Jourdian GW, Dean L, Roseman S (1971)J Biol Chem 246: 430–35.

    Google Scholar 

  20. Bailly M, Bertrand S, Doré JF (1993)Melanoma Res 3: 51–61.

    Google Scholar 

  21. Fertil B, Dertinger H, Courdi A, Malaise EP (1984)Rad Res 99: 73–84.

    Google Scholar 

  22. Harel R, Futerman AH (1993)J Biol Chem 268: 14476–81.

    Google Scholar 

  23. Manev H, Favaron M, Vicini S, Guidotti A, Costa E (1990)J Pharmcol Exp Ther 252: 419–27.

    Google Scholar 

  24. Koike T, Fehsel K, Zielasek J, Kolb H, Burkart V (1993)Immunol Lett 35: 207–12.

    Google Scholar 

  25. Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995)J Biol Chem 270: 3074–80.

    Google Scholar 

  26. Hakomori SH (1990)J Biol Chem 265: 18713–16.

    Google Scholar 

  27. Cheresh DA, Pierschbacher MD, Herzig MA, Mujoo K (1986)J Cell Biol 102: 688–96.

    Google Scholar 

  28. Rebbaa A, Bremer E, Portoukalian J (1995)Trends Glycosc Glycotechnol 7: 223–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, C.P., Buronfosse, A., Combaret, V. et al. Gangliosides protect human melanoma cells from ionizing radiation-induced clonogenic cell death. Glycoconjugate J 13, 377–384 (1996). https://doi.org/10.1007/BF00731470

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731470

Keywords

Navigation